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Abstract. We present a formal translation of a resource-aware extension of the Abstract Behav-
ioral Specification (ABS) language to the functional language Haskell. ABS is an actor-based
language tailored to the modeling of distributed systems. It combines asynchronous method calls
with a suspend and resume mode of execution of the method invocations. To cater for the result-
ing cooperative scheduling of the method invocations of an actor, the translation exploits for the
compilation of ABS methods Haskell functions with continuations.

The main result of this article is a correctness proof of the translation by means of a simulation re-
lation between a formal semantics of the source language and a high-level operational semantics
of the target language, i.e., a subset of Haskell. We further prove that the resource consumption of
an ABS program extended with a cost model is preserved over this translation, as we establish an
equivalence of the cost of executing the ABS program and its corresponding Haskell-translation.
Concretely, the resources consumed by the original ABS program and those consumed by the
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204 E. Albert et al. / A Formal, Resource Consumption-Preserving Translation from Actors to Haskell

Haskell program are the same, considering a cost model. Consequently, the resource bounds au-
tomatically inferred for ABS programs extended with a cost model, using resource analysis tools,
are sound resource bounds also for the translated Haskell programs. Our experimental evaluation
confirms the resource preservation over a set of benchmarks featuring different asymptotic costs.

Keywords: actor model, futures, cooperative multitasking, coroutine, continuation, functional
programming, operational semantics

1. Introduction

An important class of applications requires some explicit control of the underlying hardware resources,
like Cloud applications and sensor networks which involve high data rates and extensive in-network
processing [1]. Depending on the abstraction level, resource-aware programming can be error-prone.
A major challenge in resource-aware programming therefore is to provide such resource control at
an abstraction level which allows for the application of tool-supported rigorously defined resource
analysis.

Abstract Behavioural Specification (ABS) [2] is a formally-defined language for modeling actor-
based programs. An actor program consists of computing entities called actors, each with a private
state, and thread of control. Actors can communicate by exchanging messages asynchronously, i.e.
without waiting for message delivery/reply. In ABS, the notion of actor corresponds to the active
object, where objects are the concurrency units, i.e. each object conceptually has a dedicated thread
of execution. Communication is based on asynchronous method calls where the caller object does
not wait for the callee to reply with the method’s return value. Instead, the object can later use a
future variable [3, 4] to extract the result of the asynchronous method. Each asynchronous method
call adds a new process to the callee object’s process queue. ABS supports cooperative scheduling,
which means that inside an object, the active process can decide to explicitly suspend its execution so
as to allow another process from the queue to execute. This way, the interleaving of processes inside
an active object is textually controlled by the programmer, similar to coroutines [5]. However, flexible
and state-dependent interleaving is still supported: in particular, a process may suspend its execution
waiting for a reply to a method call.

ABS further supports resource-aware programming that has been successfully applied to, for ex-
ample, modeling the resource management of an industrial case study for cloud architectures [6]. The
resource-aware extension of ABS is based on a cost model that assigns a cost to each ABS instruction.
Resource analysis [7] allows the automatic generation of resource bounds inferred for ABS programs
extended with a cost model.

Whereas ABS has successfully been used to model [8], analyze [9], and verify [2] actor programs,
the development of an ABS implementation for the “real” execution of such programs has been a
major challenge. This is mainly due to the problem of implementing cooperative scheduling in an
efficient manner (common languages as Java and C++ have to resort to instrumentation techniques, e.g.
fibers [10]). ABS currently supports various official backends with different cooperative scheduling
implementations:1

1See https://abs-models.org/manual/\#-abs-backends for more information about ABS backends.
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• ABS→Maude is an interpreter based on term rewriting,

• ABS→Java uses heavyweight threads and manual stack management,

• ABS→Erlang uses lightweight threads and thread parking,

• ABS→Haskell uses lightweight threads and continuations.

The major problem addressed in this article is how we can formally show that the results of the
resource analysis of ABS programs extended with a cost model also hold for the translated ABS
programs that are executed. In this article, we focus on the Haskell translation because it provides two
interesting features. First, the use of continuations in implementing cooperative scheduling allows for
a close correspondence with the Structural Operational Semantics of ABS [2], which simplifies the
theoretical results. On the other hand, Haskell is one of the fastest ABS backends. The rest of ABS
backends are less suited for this task: it is easy to reason about Maude programs, but their execution
is significantly slower; whereas Java and Erlang programs are as fast as Haskell ones but reasoning
about them is harder.

1.1. Summary of contributions

The overall contribution of this article is a formal, resource-consumption preserving translation of
the concurrency subset of the ABS language into Haskell, given as an adaptation of the canoni-
cal ABS→Haskell backend [11]. We opted for the Haskell backend relying on the hypothesis that
Haskell serves as a better middleground between execution speed and most importantly semantic cor-
rectness. The translation is based on compiling ABS methods into Haskell functions with continua-
tions—similar transformations have been performed in the actor-based Erlang language wrt. rewriting
systems [12, 13] and rewriting logic [14], and in the translations of ABS to Prolog [15] and a subset of
ABS to Scala [16] (although there are not official ABS backends in Prolog or Scala). However, what
is unique in our translation and constitutes our main contribution, is that the translation is resource
preserving as we prove in two steps:

• Soundness. We provide a formal statement of the soundness of this translation of ABS into
Haskell which is expressed in terms of a simulation relation between the operational ABS se-
mantics and the semantics of the generated Haskell code. The soundness claim ensures that
every Haskell derivation has an equivalent one in ABS. However, since for efficiency reasons,
the translation fixes a selection order between the objects and the processes within each object,
we do not have a completeness result.

• Resource-preservation. As a corollary we have that the transformation preserves the resource
consumption, i.e., the cost of the Haskell-translated program is the same as the original ABS
program wrt. any cost model that assigns a cost to each ABS instruction, since both programs
execute the same trace of ABS instructions. This result allows us to ensure that upper bounds on
the resource consumption obtained by the analysis of the original ABS program are preserved
during compilation and are thus valid bounds for the Haskell-translated program as well.
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This article is an extended version of the paper that appeared in the LOPSTR’16 proceedings [17].
Concretely, we have added complete proofs for all the theoretical results, as well as included the
intermediate semantics and the translations between global configurations and Haskell data structures
used in Section 4. We have also extended the related work in Section 6 and improved the experimental
evaluation in Section 5 with programs showing a wider variety of asymptotic complexities.

1.2. Organization of the article

In Section 2 we specify the syntax of the source language, a subset of ABS, and detail its operational
semantics. Section 3 describes our target language and defines the compilation process. This process
translates the simplified ABS program into a Haskell program where the original statements are rep-
resented as data representing the abstract syntax tree, which is evaluated using an evaluation function
(eval). We present the correctness and resource preservation results in Section 4. These theoretical
results state that the final value obtained by executing the Haskell program is a correct final value of
the original ABS program, and that the resources consumed during the execution of the Haskell pro-
gram are the same resources consumed in the evaluation of the original ABS program (considering a
cost model that measures instructions executed, objects created, etc.). In order to simplify the proof of
these results, we use an intermediate semantics, which is also presented in Section 4. In Section 5 we
show that the runtime environment does not introduce any significant real overhead when executing
ABS instructions, and show empirically that the upper bounds obtained by the cost analysis are sound
for the Haskell translated programs. Finally, Section 6 reviews related work and Section 7 contains
the conclusions and future work.

2. Source language

Our language is based on ABS [2], a statically-typed, actor-based language with a purely-functional
core (ADTs, functions, parametric polymorphism) and an object-based imperative layer: objects with
private-only attributes, and interfaces that serve as types to the objects. ABS extends the OO paradigm
with support for asynchronous method calls; each call results in a new future (placeholder for the
method’s result) returned to the caller-object and a new process (stored in the callee-object’s process
queue) which runs the method’s activation. The active process inside an object (only one at any given
time) may decide to explicitly suspend its execution so as to allow another process from the same
queue to execute.

In this article, we will consider a simplification of ABS to its subset that concerns the concurrent
interaction of processes (inside and between objects), so as to focus solely on the more challenging
part of proving the correctness of the cooperative concurrency. In other words, the ABS language is
stripped of its functional core, local variables, object groups [18] and algebraic data types definition
(although we assume the input programs are well-typed w.r.t the ABS type-system). Note that these
simplifications are done only for the sake of conciseness and do not invalidate the results of our trans-
lation, as they could be easily added into the presented framework. Concretely, algebraic data types
and functions based on pattern matching will behave as synchronous invocations in our framework.
Supporting local variables simply requires extending our heap with a more complex structure or intro-
duce that structure in our local configurations. Finally, object groups combine different actors inside
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a component so that their execution only interleaves cooperatively, i.e., when an object finishes or
awaits. In this article, we are implicitly assuming that every object is its own object group, but the
same reasoning could be extended to objects groups with more than one object.

S ::= x:=E | f:=x!m(ȳ) | await f
| skip | S1;S2

| if B {S} else {S}
| while B {S}

E ::= V | new | f.get |m(ȳ)

V ::= x | r | I
B ::= B ∧B | B ∨B | ¬B | V ≡ V
D ::= m(r̄){ S; return z }
P ::= D : main(){ S }

1 main() {

2 node1 = new;

3 node2 = new;

4 v1 = ...;

5 v2 = ...;

6 f1 = node1 ! map(v1);

7 f2 = node2 ! map(v2);

8 await f1;

9 await f2;

10 r1 = f1.get;

11 r2 = f2.get;

12 r = reduce(r1,r2);

13 return r;

14 }

15 map(v) {

16 ... }

17 reduce(v1,v2) {

18 ... }

Figure 1: (a) Syntax of the source language (b) Simplified MapReduce task in ABS

The formal syntax of the statements S of the subset is shown in Figure 1(a). Values in our subset
are references (object or futures) and integer numbers; values can be stored in the method’s formal
parameters or attributes. We syntactically distinguish between method parameters r and attributes.
The attributes are further distinguished for the values they hold: attributes holding object references
or integer values (denoted by x, y, z . . .), and future attributes holding future references (denoted by
f ). An assignment f:=x!m(ȳ) stores to the future attribute f a new future reference returned by
asynchronously calling the method m on the object attribute x passing as arguments the values of
object attributes ȳ. An assignment x:=E stores to an object attribute the result of executing the right-
hand side E. A right-hand side can be the value of a method parameter r, an attribute x, an integer
expression I (an integer value, addition, subtraction, etc.), a reference to a new object new, the result
of a synchronous same-object method call m(ȳ), or the result of an asynchronous method call f .get
stored in the future attribute f . A call to f .get will block the object and all its processes until the
result of the asynchronous call is ready. The statement await f may be used (usually before calling
f .get ) to instead release the current process until the result of f has been computed, allowing another
same-object process to execute. Sequential composition of two statements S1 and S2 is denoted by
S1;S2. The Boolean condition B in the if and while statement is a Boolean combination of reference
equality between values of attributes. Again, note that we assume expressions to be well-typed: integer
expressions cannot contain futures or object references and boolean equality is between same-type
values. A method declaration D maps a method’s name and formal parameters to a statement S
(method body) followed by a return z statement that returns the value of the attribute z (both in
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synchronous and asynchronous method calls). Therefore, every method has exactly one return and
it is the final statement. Finally, a program P is a set of method declarations D̄ and a special method
main that has no formal parameters and acts as the program’s entry point. Given a program, we will
use the notation m(w̄) 7→ S ∈ D to obtain an instance of the method declaration m using the fresh
parameter names w̄, so S will be the body of the method with the fresh parameters and including the
final return statement.

The program of Figure 1(b) shows a basic version of a MapReduce task [19] implemented using
actors in ABS. For clarity, the example uses only two map nodes and a single reduce computation
performed in the controller node (the actor running main). First, the controller creates two objects
node1 at Line 2 (L2 for short) and node2 (at L3), and invokes asynchronously map with some values
v1 and v2 (L6–L7). In MapReduce, all map invocations must finish before executing the reduce phase:
therefore, the await instructions in L8–L9 wait for the termination of the two calls to map, releasing
the processor so that any other process in the same object of main can execute. Once they have
finished, the get statements in L10-L11 obtain the results from the futures f1 and f2. Although get

statements block the object (in this case main) and all of its processes until the result is ready, this
does not occur in our example because the preceding awaits assure the result is available. Finally,
L12 contains a synchronous-method self call to reduce that combines the partial results from the map
phase.

2.1. Operational semantics

In order to describe the operational semantics of the language defined above we first need to intro-
duce some concepts and notation. First, we consider a set IVar of attributes and LVar of method
parameters. The values considered in this article are in the Int set: integer constants and dynamically
generated references to objects and futures.

Definition 2.1. (Set of assignments Σ)
A set of assignments Σ is a mapping IVar → Int from attributes to integer values. An empty set of
assignments is denoted by ε.

Definition 2.2. (Substitutions τ and closures (S, l))
A substitution τ is a mapping from method parameters LVar to integers: τ ∈ LVar → Int . By Sτ
we denote the instantiation obtained from S by replacing each variable x in S by τ(x).

A closure (S, l) consists of a statement S obtained by replacing its free variables by actual values
and a future reference l, represented by an integer, for storing the return value.

Definition 2.3. (Heap h)
A heap h is a triple (count , h1, h2) consisting of an integer number count and partial mappings (with
finite disjoint domains) h1 : Int → Σ and h2 : Int → Int⊥, where Int⊥ = Int ∪ {⊥} (⊥ is used to
denote “undefined”). The number count is used to generate references to new objects and futures. The
function h1 specifies for each existing object, i.e., a number n such h1(n) is defined, its local state,
which is a set of assignments. Finally, the function h2 specifies for each existing future reference, i.e.,
a number n such h2(n) is defined, its return value (absence of which is indicated by ⊥).
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In the sequel we will simply denote the first component of h by h(count), write h(n)(x) for
h1(n)(x), and h(n) for h2(n). Note that h(n) will always refer to the value of the future reference n
in h2, not the set of assignments Σ associated to object n in h1.

We consider the following operations for updating heaps:

• h[count 7→ n] generates a heap equal to h but with the counter set to n.

• h[(n) 7→ v] creates a heap equal to h but storing the value v in the future variable n.

• h[(n)(x) 7→ v] is similar to the previous one, but storing the value v in the local variable x in
object n

• h[(n) 7→ ε] is used to generate a heap equal to h extended with the empty set of assignments for
the object n.

Definition 2.4. (Local and global configurations)
The local configuration of an object is denoted by the pair 〈n : Q, h〉, where n is the object reference,
Q is a list of closures and h is a heap. We use “·” to concatenate lists of closures, i.e., (S, l) · Q
represents a list where (S, l) is the head and Q is the tail.

A global configuration—denoted with the letters A and B—is a pair 〈C, h〉 containing a set of
lists of closures C = {Q} and a heap h.

(ASSIGN)
getVal(h, n, V ) = v h′ = h[(n)(x) 7→ v)]

〈n : (x:=V ;S, l) ·Q,h〉 → 〈n : (S, l) ·Q,h′〉

(NEW)
h(count) = m h′ = h[(n)(x) 7→ m, (m) 7→ ε, count 7→ m+ 1]

〈n : (x:=new;S, l) ·Q,h〉 → 〈n : (S, l) ·Q,h′〉

(GET)
h(h(n)(f)) 6= ⊥ h′ = h[(n)(x) 7→ h(h(n)(f))]

〈n : (x:=f.get;S, l) ·Q,h〉 → 〈n : (S, l) ·Q,h′〉

(AWAIT I)
/h(h(n)(f)) 6= ⊥

〈n : (await f;S, l) ·Q,h〉 → 〈n : (S, l) ·Q,h〉

(AWAIT II)
h(h(n)(f)) = ⊥

〈n : (await f;S, l) ·Q,h〉 → 〈n : Q · (await f;S, l), h〉

(ASYNC)
h(n)(x) = d h(count) = l′ v̄ = h(n)(z̄)h′ = h[(n)(f) 7→ l′, (l′) 7→ ⊥, count 7→ l′ + 1]

〈n : (f:=x!m(z̄);S, l) ·Q,h〉 d.m(l′,v̄)−→ 〈n : (S, l) ·Q,h′〉

(SYNC)
(m(w̄) 7→ Sm) ∈ D τ = [w̄ 7→ h(n)(z̄)] S′ = (̂Smτ)

x

〈n : (x:=m(z̄);S, l) ·Q,h〉 → 〈n : (S′;S, l) ·Q,h〉

(RETURNA)
h′ = h[(l) 7→ h(n)(x)]

〈n : (return∗x;S, l) ·Q,h〉 → 〈n : Q,h′〉

(RETURNS)
h′ = h[(n)(z) 7→ h(n)(x)]

〈n : (returnz x;S, l) ·Q,h〉 → 〈n : (S, l) ·Q,h′〉

Figure 2: Operational semantics: Local rules
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Using the previously defined notions we can present the relation that describes the local behavior
of an object, that is shown in Figure 2. (omitting the usual rules for sequential composition, if and
while statements because they are standard).

Note that the first closure of the list Q is the active process of the object, so the different rules
process the first statement of this closure. When the active process finishes or releases the object in
an await statement, the next process in the list will become active, following a FIFO policy. The
rule (ASSIGN) modifies the heap storing the new value of variable x of object n. It uses the function
getVal(h, n, V ) to evaluate an expression V involving integer constants and variables using the set
of assignments stored in the heap h for the object n. The (NEW) rule stores a new object reference
in variable x, increments the counter of objects references and inserts an empty mapping ε for the
variables of the new object m. Rule (GET) can only be applied if the future is available, i.e., if its
value is not ⊥. In that case, the value of the future is stored in the variable x. Both rules (AWAIT I)
and (AWAIT II) deal with await statements. If the future f is available, it continues with the same
process. Otherwise, it moves the current process to the end of the queue, thus avoiding starvation.
Note that the await statement is not consumed, as it must be checked when the process becomes
active again. When invoking the method m asynchronously in rule (ASYNC) the destination object
d and the values of the parameters r̄ are computed. Then a new future reference l initialized to ⊥
is stored in the variable f , and the counter is incremented. The information about the new process
that must be created is included as the decoration d.m(l′, v̄) of the step. Synchronous calls—rule
(SYNC)—extend the active task with the statements of the method body, where the parameters have
been replaced by their value using the substitution τ . In order to return the value of the method and
store it in the variable x, the return statement of the body is marked with the destination variable x,
called the write-back variable. This marking is formalized in the ·̂s function, defined as follows (recall
that return is the last statement of any method):

Ŝs =


S1; Ŝ2

s
if S = S1;S2,

returns z if S = return z,

S i.o.c.

Rule (RETURNA) finishes an asynchronous method invocation (in this case the return keyword is
marked with *, see rule (MESSAGE) in Figure 3), so it removes the current process and stores the final
value in the future l. On the other hand, rule (RETURNS ) finishes a synchronous method invocation
(marked with the write-back variable), so it behaves like a z:=x statement.

(INTERNAL)
〈n : Q, h〉 → 〈n : Q′, h′〉

〈(n : Q) ∪ C, h〉 → 〈(n : Q′) ∪ C, h′〉

(MESSAGE)

〈n : Qn, h〉
d.m(l′,v̄)−→ 〈n : Q′, h′〉

m(w̄) 7→ Sm ∈ D τ = [w̄ 7→ v̄] S′ = (̂Smτ)
∗

〈(n : Qn) ∪ (d : Qd) ∪ C, h〉 → 〈(n : Q′) ∪ (d : Qd · (S′, l′)) ∪ C, h′〉

Figure 3: Operational semantics: Global rules
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Based on the previous rules, Figure 3 shows the relation describing the global behavior of con-
figurations. The (INTERNAL) rule applies any of the rules in Figure 2, except (ASYNC), in any of
the objects. The (MESSAGE) rule applies the rule (ASYNC) in any of the objects. It creates a new
closure (Ŝmτ

∗
, l′) for the new process invoking the method m, and inserts it at the back of the list

of the destination object d. Note the use of ·̂∗ to mark that the return statement corresponds to an
asynchronous invocation. Note that in both (INTERNAL) and (MESSAGE) rules the selection of the
object to execute is non-deterministic. When needed, we decorate both local and global steps with
object reference n and statement S executed, i.e., 〈n : Q, h〉 →n

S 〈n : Q′, h′〉 and 〈C, h〉 →n
S 〈C ′, h′〉.

We remark that the operational semantics shown in Figure 2 and 3 is very similar to the foun-
dational ABS semantics presented in [2], considering that every object is a concurrent object group
(see [2] for further details). The main difference is the representation of configurations: in [2] con-
figurations are sets of futures and objects that contain their local stores, whereas in our semantics all
the local stores and futures are merged in a heap. Finally, our operational semantics considers a FIFO
policy in the processes of an object, whereas [2] left the scheduling policy unspecified.

3. Target language

Our ABS subset is translated to Haskell with coroutines. A coroutine is a generalization of a subrou-
tine: besides the usual entry-point/return-point of a procedure, a coroutine can have other entry/exit
points, at intermediate locations of the procedure’s body. In other words, a coroutine does not have to
run to completion; the programmer can specify places where a coroutine can suspend and later resume
exactly where it left off.

3.1. Coroutines and continuation passing style

Coroutines can be implemented natively on top of programming languages that support first-class con-
tinuations (which subsequently require support for closures and tail-call optimization). A continuation
with reference to a program’s point of execution is a data structure that captures what the remaining
of the program does (after the point). As an example, consider the Haskell program in Figure 4(a).
The continuation of the call to (even 3) at L2 is λa→print a, assuming a is the result of call to even
and the continuation is represented as a function. The continuation of (mod x 2) at L1 is the function
λa→print (eq a 0) where x is bound by the even function and a is the result of (mod x 2). Abstracting
over any program, an expression with type expr ::a has a continuation k with type k ::( a→r ) with a
being the expression’s result type and r the program’s overall result type. To benefit from continu-
ations (and thus coroutines), a program has to be transformed in the so-called continuation-passing

1 even x = eq (mod x 2) 0

2 main = print (even 3)

1 mod’ x y k = k (mod x y)

2 eq’ x y k = k (eq x y)

3 even’ x k = mod’ x 2 (λa → eq’ a 0 k)

4 main = even’ 3 (λa → print a)

Figure 4: (a) Example program in direct style and (b) translated to CPS
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style [20, 21] (CPS): a function definition of the program f :: args→a is rewritten to take its current
continuation as an extra last argument, as in f ’:: args→(a→r )→r. A function call is also rewritten to
apply this extra argument with the actual continuation at point. A CPS transformation can be applied
to all functions of a program, as in the example of Figure 4(b), or (for efficiency reasons) to only the
subset that relies on continuation support, e.g. only those functions that need to suspend/resume.

3.2. Compilation of ABS programs to Haskell with CPS

In our case, ABS programs are translated to Haskell with CPS applied only to statements and methods,
but not (sub)expressions. Figure 5 shows the types and datatypes used to express the ABS programs
in Haskell with CPS. Continuations have the type k :: a→Stm, where Stm is a recursive datatype with
each one of its constructors being a statement, and the recursive position being the statement’s current
continuation. Stm being the program’s overall result type (Stm≡r), reveals the fact that the translation
of ABS constructs a Haskell AST-like datatype “knitted” with CPS, which will only later be inter-
preted at runtime (see Section 3.3): capturing the continuation of an ABS process allows us to save
the process’ state (e.g. call stack) and rest of statements as data. For technical convenience, our state-
ments and methods do not directly pass results among each other but only indirectly through the state
(heap); thus, we can reduce our continuation type to k ::()→Stm and further to the “nullary” function
k :: Stm. Accordingly, the CPS type of our methods (functions) and statements (constructors) becomes
f ’:: args→Stm→Stm. Worth to mention in Figure 5 is that the body of While statement and the two
branch bodies of If can be thought of as functions with no args written also in CPS (thus type Stm→
Stm) to “tie” each body’s last statement to the continuation after executing the control structure.

A Method definition is a CPS function that takes as input a list [Ref] of the method’s parameters
(passed by reference), the callee object named this, a writeback reference (Maybe Ref), and last its

type Method = [Ref] → Ref → Maybe Ref →
::::
Stm → Stm

data Stm where −− (formatted in GADT syntax)
Skip ::

:::
Stm → Stm

Await :: Attr →
:::
Stm → Stm

Assign :: Attr → Rhs →
:::
Stm → Stm

If :: B → (
:::
Stm→Stm) → (

:::
Stm→Stm) →

:::
Stm → Stm

While :: B → (
::::
Stm→Stm) →

:::
Stm → Stm

Return :: Attr → Maybe Ref →
:::
Stm → Stm

data Rhs = Val V

| New

| Get Attr

| Async Attr Method [Attr]

| Sync Method [Attr]

type Ref = Int

type Attr = Int

data B = B :∧ B | B :∨ B | :¬ B | V :≡ V

data V = A Ref | P Ref | I Int

| Add V V | Sub V V ...

Figure 5: The syntax and types of the target language. Continuations are
::::::::::::::
wave-underlined. The

program/process final result type is double-underlined
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current continuation Stm. In case of synchronous call, the callee method indirectly writes the Return
value to the writeback reference of the heap and the execution jumps back to the caller by invoking the
method’s continuation; in case of asynchronous call the writeback is empty, the return value is stored
to the caller’s future (destiny) and the method’s continuation is invoked resulting to the exit of the
ABS process. An object or future reference Ref is represented by an integer index to the program’s
heap; similarly, an object attribute Attr is an integer index to an internal-to-the-object attribute array,
hence shallow-embedded (compared to embedding the actual name of the attribute). Values (V) in
our language can be this-object attributes (A), parameters to the method (P), integer literals (I), and
integer arithmetic on those values (Add, Sub...). The right-hand side (Rhs) of an assignment directly
reflects that of the source language shown in Figure 1-a). Boolean expressions are only appearing
as predicates to If and While and are inductively constructed by the datatype B, which represents
reference and integer comparison.

sJskipKk,wb = Skip k sJx:=V Kk,wb = Assign x V JV K k
sJawait fKk,wb = Await f k sJx:=newKk,wb = Assign x New k

sJreturn xKk,wb = Return x wb k sJx:=f.getKk,wb = Assign x (Get f) k
sJreturn∗ xKk,wb = Return x Nothing k sJx:=y!m(z̄)Kk,wb = Assign x (Async y m z̄) k
sJreturnz xKk,wb = Return x (Just z) k sJx:=m(z̄)Kk,wb = Assign x (Syncm z̄) k

sJS1;S2Kk,wb = sJS1Kk′,wb with k′ = sJS2Kk,wb
sJif B {S1} else {S2}Kk,wb = If BJBK (\k′ → sJS1Kk′,wb) (\k′ → sJS2Kk′,wb) k

sJwhile B {S}Kk,wb = While BJBK (\k′ → sJSKk′,wb) k

mJmK = (m l this wb k = sJSmKk,wb)
where m(w̄) 7→ Sm ∈ D and l is the Haskell list that contains

the same elements as the sequence w̄

Figure 6: Translation of ABS-subset programs to Haskell AST

The compilation of statements is shown in Figure 6. The translation sJSKk,wb takes two argu-
ments: the continuation k and the writeback reference wb. Each statement is translated into its Haskell
counterpart, followed by the continuation k. The multiple rules for the return statement are due to
the different uses of the translation: when compiling methods the return statement will appear un-
marked, so we include the writeback passed as an argument; otherwise, it is used to translate runtime
configurations, so return statements will appear marked and we generate the writeback related to
the mark. When omitted, we assume the default values k = undefined and wb = Nothing for
the sJSKk,wb translation. BJBK represents the translation of a boolean expression B, and V JV K the
translation of integer expressions, references or variables. A method definition translates to a Haskell
function, as defined by mJmK, that includes the compiled body. Figure 7 contains the translation to
Haskell with CPS of the original MapReduce program written in ABS, whose source code was shown
in Figure 1-b).
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1 main, map, reduce :: Method

2 main [] this wb k =

3 Assign node1 New $

4 Assign node2 New $

5 Assign f1 (Async node1 map [v1])$

6 Assign f2 (Async node2 map [v2])$

7 Await f1 $

8 Await f2 $

9 Assign r1 (Get f1) $

10 Assign r2 (Get f2) $

11 Assign r (Sync reduce [r1,r2]) $

12 Return r wb k

13

14 map [v] this wb k = ...

15 reduce [a,b] this wb k = ...

16

17 −− Position in the attribute array
18 [node1,node2,f1,f2,r1,r2,r] = [0..]

Figure 7: The Haskell-translated running example of MapReduce

3.3. Runtime execution

The translation of an ABS program is a Haskell program with CPS where the statements have been
encoded as data structures. Therefore, to execute the Haskell program we need a mechanism that
processes these data structures until they produce a final result. This evaluation mechanism will be
performed by eval, a Haskell function that takes a heap and an active object an executes a single
statement.

For the eval function, we will use a heap representation in Haskell very similar to the heap notion
presented in Definition 2.3. Concretely, the program heap is implemented as the triple: array of ob-
jects, array of futures and an Int counter. Every cell in the objects-array designates one object holding
a pair of its attribute array and process queue (double-ended) in Haskell IOVector (IOVector Ref,

Seq Proc). A cell in futures-array denotes a future which is either unresolved with a number of
listener-objects awaiting for it to be completed or resolved with a final value, i.e., the type of the
futures-array is IOVector (Either [Ref] Ref). An ever-increasing counter is used to pick new
references; when it reaches the arrays’ current size both of the arrays double in size (i.e. dynamic
arrays). The size of all attribute arrays, however, is fixed and predetermined at compile-time by in-
specting the source code (as shown in L18 of Figure 7).

The eval function accepts a this object reference, the current heap h, and the maximum number
of attributes in objects attrArrSize, and executes a single statement of the head process in the pro-
cess queue. It returns the executed statement, a new heap and those objects that have become active
after the execution, i.e., eval this heap :: IO (Stm, Heap, [Ref]). An await executed state-
ment will put its continuation (current process) in the tail of the process queue, effectively enabling
cooperative multitasking, whereas all other statements will keep the current process at the head of the
process queue. A Return executed statement originating from an asynchronous call is responsible for
re-activating the objects that are blocked on its resolved future. Figure 8 contains a snippet of the eval
function, concretely the code that creates a new object, executes an unblocked await, and invokes a
method asynchronously (the complete code can be found in the file Eval.hs from the repository https:
//github.com/abstools/abs-haskell-formal/blob/master/src). The first lines (L2–L6)
extract the information (attrs,pqueue) of object this from the heap, selects the first process
from pqueue and selects its first continuation res. The fragment L8–14 handles the creation of a
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1 eval this h attrArrSize = do
2 ( attrs ,pqueue) <− objects h ‘V.read‘ this
3 case S.viewl pqueue of
4 S.EmptyL −> error ”scheduled an empty−proc object”
5 (Proc (destiny, c) S.:< restProcs) −> let res = c in case res of
6

7 (...)
8 Assign lhs New k’ −> do
9 ( attrs ‘V.write ‘ lhs) $ newRef h

10 updateObj $ Left k’
11 initAttrVec <− V.replicate attrArrSize (−1)
12 (objects h ‘V.write ‘ newRef h) ( initAttrVec , S.empty)
13 h’ <− incCounterMaybeGrow
14 return (res, [ this ], h ’)
15 (...)
16 Await attr k’ −> do
17 fut <− V.read (futures h) =<< (attrs ‘V.read‘ attr )
18 case fut of
19 Left −> do −− unresolved future
20 (...)
21 Right −> do −− already−resolved
22 future
23 updateObj $ Left k’
24 $ return (res, [ this ], h)
25 (...)
26 Assign lhs (Async obj m params) k’ −> do
27 calleeObj <− attrs ‘V.read‘ obj −− read the callee object
28 ( calleeAttrs , calleeProcQueue) <− (objects h ‘V.read‘ calleeObj)
29 derefed params <− mapM (attrs ‘V.read‘) params −− read the passed attrs
30 let newCont = m derefed params calleeObj Nothing (error ”...”)
31 let newProc = Proc (newRef h, newCont)
32 ( attrs ‘V.write ‘ lhs) (newRef h)
33 updateObj (Left k’)
34 (objects h ‘V.write ‘ calleeObj) ( calleeAttrs , calleeProcQueue S.|> newProc)
35 ( futures h ‘V.write ‘ newRef h) (Left [ ]) −− create a new unresolved future
36 h’ <− incCounterMaybeGrow
37 return (res, this :[ calleeObj | S.null calleeProcQueue], h’)
38 (...)

Figure 8: Snippet of the eval function.
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new object, where lhs is the position in the vector attrs of the variable that will store the refer-
ence. In L9 the function updates the heap by storing a fresh reference (using the function newRef)
in the variable lhs. Then, in L10, the function updates the process queue by pushing the next con-
tinuation k’ in the front using function updateObj. In L11–12 the code creates an initial mapping
initAttrVec for the new object and inserts it in the heap with an empty process queue (S.empty rep-
resents ε). Finally, it increments the reference counter using the function incCounterMaybeGrow2

and returns (res,[this],h’). The fragment L16–24 handles await statements, omitting unre-
solved ones. Here attr is the position in the vector attrs of the future variable, so the code extracts
its value from the heap (L17). If that value is defined (it has the form Right _) then the await is not
blocked and proceeds by appending the continuation k’ in the front of the process queue and returning
(res,[this],h)—see L21–24). The fragment L26–37 handles asynchronous method calls. lhs and
obj are the positions in the vector attrs of the variable that will store the future and the reference to
the object that will execute the method, m is the Haskell function that is the translation of method m,
params is the list of variables (the arguments of the method invocation), and k’ is the continuation.
The first 3 lines obtain the mapping and process queue of object obj and create a list of reference val-
ues from the list of variables (derefed_params). Line 30 invoke m to obtain the continuation related
to the asynchronous call. Line 32 stores the new reference newRef h in position lhs, and line 33 up-
dates the heap by inserting the continuation k’ in the front of the process queue of the current object
on. The next two lines create and insert in the back of the process queue of object obj a new process
with continuation newCont and destiny the new reference newRef h. L35 creates a new undefined
future variable, i.e., with value Left [ ], and L36 increments the reference counter of the heap—
recall that, as mappings are implemented as growable arrays, the function incCounterMaybeGrow

can increment their size. Finally, a tuple with the instruction res, a list of objects and the new heap
h’ is returned. Note that if the callee object queue is empty then the list of objects returned will be
[this], otherwise it will be [this,calleeObj].

On top of eval, a global scheduler “trampolines” over a queue of active objects: it calls eval on
the head object, puts the newly-activated objects in the tail of the queue, and loops until no objects are
left in the queue—meaning the ABS program is either finished or deadlocked. At any point in time,
the pair of the scheduler’s object queue with the heap comprise the program’s state.

4. Correctness and resource preservation

To prove that the translation is correct and resource preserving, we provide an intermediate semantics
� for the Haskell translated programs. This semantics represents an intermediate layer of abstraction
between the original ABS program and the target Haskell with CPS, and its main goal is simplifying
the proofs. The � semantics is depicted in Figure 9, and considers configurations (h, [om]) where
all the information of the objects is stored in a unified heap—concretely h(on)(Q) returns the process
queue of object on. The semantics in Figure 9 presents two main differences w.r.t. that in Figures 2
and 3 of Section 2. First, the list [om] is used to apply a round-robin policy: the first unblocked

2Since the implementation uses growable arrays to store the mapping from objects to their attributes, this function also
checks if the array is complete and must grow.
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(ASSIGN)

nextObject(h, [om]) = on h(on)(Q) = (Assign x V k′, l) · q
getVal(hc, on, V ) = v h′ = h[(on)(x) 7→ v, (on)(Q) 7→ (k′, l) · q]

(h, [om]) � (h′, [on+1→m] : [o1→n])

(NEW)

nextObject(h, [om]) = on h(on)(Q) = (Assign x New k′, l) · q
h(count) = onew h′ = h[(on)(x) 7→ onew, count 7→ onew + 1,

(onew)(Q) 7→ ε, (on)(Q) 7→ (k′, l) · q]
(h, [om]) � (h′, [on+1→m] : [o1→n])

(GET)

nextObject(h, [om]) = on h(on)(Q) = (Assign x (Get f) k′, l) · q
h(h(on)(f)) = Right v h′ = h[(on)(x) 7→ v, (on)(Q) 7→ (k′, l) · q]

(h, [om]) � (h′, [on+1→m] : [o1→n])

(AWAIT I)

nextObject(h, [om]) = on h(on)(Q) = (Await f k′, l) · q
h(h(on)(f)) = Right v h′ = h[(on)(Q) 7→ (k′, l) · q]

(h, [om]) � (h′, [on+1→m] : [o1→n])

(AWAIT II)

nextObject(h, [om]) = on h(on)(Q) = (Await f k′, l) · q
h(h(on)(f)) = Left e h′ = h[(on)(Q) 7→ q · (Await f k′, l)]

(h, [om]) � (h′, [on+1→m] : [o1→n])

(ASYNC)

nextObject(h, [om]) = on h(on)(Q) = (Assign f (Async x m z̄) k′, l) · q
h(count) = l′ h(on)(x) = ox h(ox)(Q) = qx (m(w̄) 7→ S) ∈ D
k′′ = m h(on)(z̄) on Nothing undefined newQadd([om], on, ox) = s

h′ = h[(on)(f) 7→ l′, count 7→ l′ + 1, l′ 7→ Left [ ],

(on)(Q) 7→ (k′, l) · q, (ox)(Q) 7→ qx · (k′′, l′)]
(h, [om]) � (h′, s)

(SYNC)

nextObject(h, [om]) = on h(on)(Q) = (Assign x (Syncm z̄) k′, l) · q (m(w̄) 7→ S) ∈ D
k′′ = m h(on)(z̄) on (Just x) k′ h′ = h[(on)(Q) 7→ (k′′, l) · q]

(h, [om]) � (h′, [on+1→m] : [o1→n])

(RETURNA)

nextObject(h, [om]) = on h(on)(Q) = (Return x Nothing , l) · q
newQdel([om], on, q) = s h′ = h[l 7→ Right h(on)(x), (on)(Q) 7→ q]

(h, [om]) � (h′, s)

(RETURNS)

nextObject(h, [om]) = on h(on)(Q) = (Return x (Just z) k′, l) · q
h′ = h[(on)(z) 7→ h(on)(x), (on)(Q) 7→ (k′, l) · q]

(h, [om]) � (h′, [on+1→m] : [o1→n])

Figure 9: Intermediate semantics.
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object3 on in [om] is selected using nextObject(h, [om]), the first statement of the active process of
on is executed and then the list is updated to continue with the object on+1. The other difference
is that process queues do not contain sequences of statements but continuations, as explained in the
previous section. To generate these continuation rules (ASYNC) and (SYNC) invoke the translation of
the methods m with the adequate parameters. Nevertheless, the rules of the � semantics correspond
with the semantic rules in Section 2. When needed, we decorate a � step with the object reference
on and the continuation res executed: �on

res .

Given a list [om] we use the notation [oi→k] for the sublist [oi, oi+1, . . . , ok], and the operator
(:) for list concatenation. In the rules (ASYNC) and (RETURNA), where the object list can increase
or decrease one object, we use the following auxiliary functions: newQadd ([om], on, oy) inserts the
object oy into [om] if it is new (i.e., it does not appear in [om]), and newQdel ([om], on, qn) removes the
object on from [om] if its process queue qn is empty. In both cases, they advance the list of objects to
on+1.

newQadd ([om], on, oy) =

{
[on+1→m] : [o1→n] if oy ∈ [om]

[on+1→m] : [o1→n] : [oy] if oy /∈ [om]

newQdel ([om], on, qn) =

{
[on+1→m] : [o1→n−1] if qn = ε

[on+1→m] : [o1→n] if qn 6= ε

Our goal is proving that a sequence of eval steps represents a valid trace w.r.t. the semantics→
in Section 2. We will proceed in two steps: First, we will prove that an eval step is also a valid
step w.r.t. the intermediate semantics �; and then we will prove that every �-step can be performed
with→ using suitable configurations. The first lemma states that the results of invoking eval on the
first unblocked object on are valid w.r.t. �. To simplify notation, we consider an auxiliary function
updL([om], on, l) = [on+1→m] : [o1→n−1] : l that updates the list of object references.

Lemma 4.1. (Soundness of eval w.r.t. �)
If the next unblocked object is nextObject(h, [om]) = on and eval on h = (res,l,h’) then
(h, [om]) �on

res (h′, updL([om], on, l)).

Proof:
By case distinction on the portion of the eval code that processes res (see Figure 8). Here we only
show 3 cases, but the rest are analogous. Notice that the current object this represents the object on.

• res = Assign lhs New k’

Here, lhs is the position in the vector attrs of the variable x. The fresh reference extracted
from the heap with newRef is h(count), and S.empty represents the empty queue ε. Then we

3Object whose active process is not waiting for a future variable in a get statement.
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can perform the �-step:

(NEW)

nextObject(h, [om]) = on h(on)(Q) = (res, d) · q
res = Assign x New k′ h(count) = onew

h′ = h[(on)(x) 7→ onew, count 7→ onew + 1,

(onew)(Q) 7→ ε, (on)(Q) 7→ (k′, d) · q]
(h, [om]) �on

res (h′, [on+1→m] : [o1→n])

It is clear that h′ = h’ because the updates are the same in both the code and the �-step, and
[on+1→m] : [o1→n] ≡ updL([om], on, [on]).

• res = Await attr k’

attr is the position in the vector attrs of the future variable f , and as before [on+1→m] :
[o1→n] ≡ updL([om], on, [on]). Therefore we can perform the following �-step:

(AWAIT I)

nextObject(h, [om]) = on h(on)(Q) = (res, d) · q
res = Await f k′ h(h(on)(f)) = Right v

h′ = h[(on)(Q) 7→ (k′, l) · q]
(h, [om]) �on

res (h′, [on+1→m] : [o1→n])

• Assign lhs (Async obj m params) k’

lhs and obj are the positions of the future variable x and the reference to the callee object y
(oy) in the vector attrs. The continuation obtained from the invocation of m (newCont in the
code, k′′ in the �-step) is combined with a new reference—newRef h, that returns the counter
of references, and is the same as h(count)—to create a new process newProc that is inserted as
the last element of the queue of the callee object (oy). An undefined variable Left [] is stored
in reference h(count), and that counter is incremented. Therefore we can perform the following
�-step:

(ASYNC)

nextObject(h, [om]) = on h(on)(Q) = (res, d) · q h(count) = l′

res = Assign x (Async y m z̄) k′ h(on)(y) = oy h(oy)(Q) = qy

(m(w̄) 7→ S) ∈ D k′′ = m(h(on)(z̄), on, Nothing, λ ∅ → undefined)

newQadd ([om], on, oy) = s

h′ = h[(on)(x) 7→ l′, count 7→ l′ + 1, l′ 7→ Left [ ],

(on)(Q) 7→ (k′, l) · q, (oy)(Q) 7→ qy · (k′′, l′)]
(h, [om]) �on

res (h′, s)

It is easy to see that h’ is equal to h′ since they have received the same updates in variable x,
counter, future variables and the process queues of oy (the callee object) and on (the current
object).

ut
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cJ〈C, h〉K = (h′, act),where qJεK = ε

C = {(o1, Q1), . . . , (om, Qm)} and qJ(S, l) ·QK = (sJSK,l) · qJQK
act = [on | (on, Qn) ∈ C,Qn 6= ε]

h′ = h[(oi)(Q) 7→ qJQiK]

Figure 10: Translation from source to target configurations.

The next step is to prove the soundness of � w.r.t.→, i.e., that every �-step can be performed
using→. In order to relate these two semantics, we first need a translation from runtime configurations
〈C, h〉 of Section 2 to concrete Haskell data structures used in the intermediate � semantics and vice
versa. This translation is defined in Figure 10. The set of closure lists C is translated into a list of
object references, and the process queues insideC are included into the heap related to the special term
Q. Although we use the same notation h, we consider that the heap is translated into the corresponding
Haskell tuple (object vector, future vector, counter) explained in Section 3. As usual with heaps, we
use the notation h[(on)(Q) 7→ q] to update the process queue of the object on to q. Finally, object
attributes and method parameters become Integers, and those Int⊥ values stored in the futures become
Either values. To denote the inverse translation from data structures to runtime configurations we use
cJ(h′, act)K−1 = 〈C, h〉—the same for queues qJ·K−1 and statements sJ·K−1. Note that the translation
cJ·Kc is not deterministic because it generates a list of object references from a set of closures C, so
the order of the objects in the list is not defined. On the other hand, the translation of the heap in cJ·K
and the inverse translation cJ·K−1 are deterministic.

Considering the translation cJ·K−1 we can state the soundness of � as follows: a step tA �on
S tB

can be performed with→ using the translated configurations. Concretely:

Lemma 4.2. (Soundness of � w.r.t.→)
If tA �on

S tB then cJtAK−1 →on
S

cJtBK−1.

Proof:
By case distinction on the rule applied to perform the step. The reasoning is similar in all the cases, so
we only detail the steps (ASSIGN), (ASYNC), and (RETURNA). For simplicity, we will identify the
statement S used in the step tA �on

S tB (which is a Haskell value of type Stm) with the corresponding
statement using the syntax of Figure 1. For example, we identify Assign x V k’ with x:=V.

• (ASSIGN).

(ASSIGN)

nextObject(hc, [om]) = on hc(on)(Q) = (Assign x V k, l) · q
getVal(hc, on, V ) = v

h′c = hc[(on)(x) 7→ v, (on)(Q) 7→ (k, l) · q]
tA ≡ (hc, [om]) �on

x:=V (h′c, [on+1→m] : [o1→n]) ≡ tB

The inverse translation of tA is defined as

cJtAK−1 = A = ((on : (x:=V ;S, l) ·Q) ∪ C, h)
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where V JV K−1 = V ′, sJkK−1 = S, qJqK−1 = Q, h is the inverse translation of hc and C is
the inverse translation of the rest of object queues. Then from A we can perform the following
derivation:

(INTERNAL)

(ASSIGN)
getVal(h,on,V ′)=v h′=h[(on)(x)7→v]
〈on:(x:=V ′;S,l)·Q,h〉→〈on:(S,l)·Q,h′〉

A ≡ 〈(on : (x:=V ′;S, l) ·Q) ∪ C, h〉 →on
x:=V ′ 〈(on : (S, l) ·Q) ∪ C, h′〉 ≡ B

It is clear that cJtBK−1 = B because the set of object references in B is {om} and B contains
(on : qJ(k, l) ·qK−1). Moreover, h′ is the translation of h′c because is the result of transforming h
with the same operations as hc, i.e., h′(on)(Q) = qJ(k, l) ·qK−1 = (S, l) ·Q and h′c(on)(x) = v.

• (ASYNC).

(ASYNC)

nextObject(hc, [om]) = on h(count) = l′

hc(on)(Q) = (Assign f (Async x m z̄) k, l) · qn
hc(on)(x) = ox hc(ox)(Q) = qx (m(w̄) 7→ Sm) ∈ D

k′ = m hc(on)(z̄) on Nothing undefined

newQadd ([om], on, ox) = s

h′c = hc[(on)(f) 7→ l′, count 7→ l′ + 1, (l′) 7→ ⊥,
(on)(Q) 7→ (k, l) · qn, (ox)(Q) 7→ qx · (k′, l′)]
tA ≡ (hc, [om]) �on

f:=x!m(z̄) (h′c, s) ≡ tB

The inverse translation of tA is defined as
cJtAK−1 = A = ((on : (f:=x!m(z̄);S, l) ·Qn) ∪ (ox : Qx) ∪ C, h)

where sJkK−1 = S, qJqnK−1 = Qn, qJqxK−1 = Qx, hc is the inverse translation of h and C is
the inverse translation of the rest of object queues. Then from A we can perform the following
derivation:

(MESSAGE)

〈on : (f:=x!m(z̄);S, l) ·Qn, h〉
ox.m(l′,r̄)−→ 〈on : (S, l) ·Qn, h′〉

m(w̄) 7→ Sm ∈ D τ = [w̄ 7→ r̄] S′ = (̂Smτ)
∗

A ≡ 〈(on : (f:=x!m(z̄);S, l) ·Qn) ∪ (ox : Qx) ∪ C, h〉 →on
f:=x!m(z̄)

〈(on : (S, l) ·Qn) ∪ (ox : Qx · (S′, l′)) ∪ C, h′〉 ≡ B

where the step inside object on uses rule (ASYNC)

(ASYNC)

h(on)(x) = ox h(count) = l′ r̄ = h(on)(z̄)

h′ = hc[(on)(f) 7→ l′, (l′) 7→ ⊥, count 7→ l′ + 1]

〈on : (f:=x!m(z̄);S, l) ·Qn, h〉
ox.m(l′,r̄)−→ 〈on : (S, l) ·Qn, h′〉

The set of object references in B is {om}, so it contains the same references as the list s =
newQadd ([om], on, ox). On the other hand, B contains the updated list of closures (on :
qJ(k, l) · qnK−1) and (ox : qJqx · (k′, l′)K−1)—notice that the translation of the continuation k′ is
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S′ = (̂Smτ)
∗
. Finally, h′ is the translation of h′c because is the result of transforming h with the

same operations as hc, i.e., h′(on)(f) = l′, h′(count = l′ + 1), and h′(l′) = ⊥.

• (RETURNA).

(RETURNA)

nextObject(hc, [om]) = on

hc(on)(Q) = (Return x Nothing k, l) · qn
newQdel ([om], on, qn) = s

h′c = hc[l 7→ hc(on)(x), (on)(Q) 7→ qn]

tA ≡ (hc, [om]) �on
return∗ x (h′c, s) ≡ tB

The inverse translation of tA is defined as

cJtAK−1 = A = (on : (return∗ x;S, l) ·Qn) ∪ C, h)

where sJkK−1 = S, qJqnK−1 = Qn, hc is the inverse translation of h and C is the inverse
translation of the rest of object queues. Then from A we can perform the following derivation:

(INTERNAL)

(RETURNA) h′=h[(l) 7→h(on)(x)]
〈on:(return x;S,l)·Q,h〉→〈on:Q,h′〉

A ≡ 〈(on : (return∗ x;S, l) ·Q) ∪ C, h〉 →on
return∗ x

〈(on : (S′;S, l) ·Q) ∪ C, h〉 ≡ B

If qn = ε then on will not appear in s, but Qn will be empty as well. On the other hand, B
contains the updated list of closures (on : qJqnK−1). Finally, h′ is the translation of h′c because is
the result of transforming h with the same operations as hc, i.e., h′(l) = hc(on)(c) = h(on)(x).

ut

Based on the previous lemmas, we can prove the soundness of the traces, i.e., every sequence of
concatenated eval steps represents a valid trace w.r.t. →. Given a heap hi and an object oi from the
list of active objects in si (those whose queue is not empty), eval performs one step of execution
processing the instruction resi, generating a list of new active objects li and producing a new heap
hi+1. These eval invocations can be chained, producing a sequence of heaps and active objects
that can be translated to global configurations that form a valid trace wrt. →, and execute the same
statement resi in the same object oi. Therefore, the following result expresses the expected one-to-
one relationship between the Haskell program evaluated using eval invocations and the original ABS
program evaluated by the→ semantics. Note that for the sake of conciseness we unify the statements
S and their representation as Haskell terms res, since there is a straightforward translation between
them.

Theorem 4.3. (Trace soundness)
Consider an initial state (h1, s1) and a sequence of n− 1 consecutive eval steps defined as:

1) nextObject(hi, si) = oi,
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2) eval oi hi = (resi, li, hi+1),

3) si+1 = updL(si, oi, li).

Then there is a trace cJ(h1, s1)K−1 →o1
res1

cJ(h2, s2)K−1
c →o2

res2
. . .→on−1

resn−1
cJ(hn, sn)K−1.

Proof:
By induction on the number of eval steps using Lemmas 4.1 and 4.2. ut

Note that it is not possible to obtain a similar result about trace completeness since the →-
semantics in Figure 3 selects the next object to execute nondeterministically (random scheduler),
whereas the intermediate �-semantics in Figure 9 follows a concrete round-robin scheduling policy.
As a final remark, notice that the intermediate semantics � can be seen as a specification of the eval
function. Therefore, in addition to be used as an intermediate layer to simplify proofs, the semantics
� could also be used to guide the correctness proof of eval if we wanted to use semi-automatic
proof assistance tools like Isabelle [22] or Coq [23], and also to generate tests automatically using
QuickCheck [24].

4.1. Preservation of resource consumption and resource bounds

A strong feature of our translation is that the Haskell-translated program preserves the resource con-
sumption of the original ABS program. As in [25] we use the notion of cost model to parameterize the
type of resource we want to bound. Cost models are functions from ABS statements to real numbers,
i.e.,M : S → R, that define different resource consumption measures. For instance, if the resource to
measure is the number of executed steps thenM(S) = 1, i.e., each instruction has cost one. However,
if one wants to measure memory consumption, we have that

M(S) =

{
c if S is the statement x := new

0 i.o.c.

where c refers to the size of an object reference. Resource preservation is based on the notion of trace
cost, i.e., the sum of the cost of the statements executed. Given a concrete cost modelM, an object
reference o and a program execution T ≡ A1 →o1

S1
. . .→on−1

Sn−1
An, the cost of the trace C(T , o,M) is

defined as:

C(T , o,M) =
∑

S∈T |{o}

M(S)

Notice that, from all the steps in the trace T , it takes into account only those performed in object
o (denoted as T |{o}), so the cost notion is object-sensitive. This notion is analogously adapted to
traces of �-steps and also to sequences of eval invocations because it only considers the object oi
involved and the statement Si executed in every step. Since the trace soundness in Theorem 4.3 states
that the eval function performs the same steps as some trace T , the consumption preservation is a
straightforward corollary:
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Corollary 4.4. (Consumption Preservation)
Let (h1, s1) be an initial state and consider a sequence TE of n− 1 consecutive eval steps defined as:

1) oi = nextObject(hi, si),
2) eval oi hi = (resi, li, hi+1),
3) si+1 = updL(si, oi, li).

Then there is a trace T = cJ(h1, s1)K−1 →o1
res1

cJ(h2, s2)K−1
c →o2

res2
. . . →on−1

resn−1
cJ(hn, sn)K−1 such

that C(TE , o,M) = C(T , o,M).

Using Corollary 4.4 we can prove that the upper bounds on resource consumption that are inferred
for the ABS programs using resource analyzers like [25] are also valid upper bounds for the Haskell
translated code. We base our results on Theorem 3 from [25], which states that the cost of any ;-trace
T using the semantics ; in [25] is less than or equal to the obtained upper bound. The only step we
need to prove is that for any→-trace we have an equivalent ;-trace with the same cost. These two
semantics have some syntactic differences but they have the same behavior, so the correspondence
is direct. In this case, the correspondence is not one-to-one because the semantics ; has a rule to
nondeterministically select the next process to execute in an object when it is idle—namely rule (11)—
whereas our semantics selects automatically the next process in the queue when a process finishes
or becomes blocked. Performing one →-step can require two ;-steps, but in that case the first one
executes the same statement S as→ and the second one does not execute any instruction (its decoration
is ε). Therefore the statements executed will be the same in both semantic calculi.

The language presented in Section 2 and its semantics in Figures 2 and 3 are a simplified version
of those in [25]. The main differences are: 1) The representation of the states, 2) the syntax of method
invocations (both synchronous and asynchronous), and 3) the consideration of local variables and class
declarations. In [25] states St are sets of futures and objects, which contain their queues of pending
tasks. Formally an object is represented as ob(o, C, h, 〈tv, b̄〉,Q), where o is the object identifier, C is
the class, h is the object heap related to object o (note that it is not a global heap), tv is the table of
local variables, b̄ is the sequence of instructions to execute, and Q the set of pending tasks. Futures
are represented as fut(l, v), where l is the future identifier and v its value, possibly⊥. The operational
semantics rewrites states St ; St ′.

For simplicity and for making the article self-contained, in Figure 11 we present the operational
semantics ; of [25] adapted to our source language: attributes can be directly assigned by new and
get instructions or arbitrary expressions in the right-hand side, future variables are attributes instead
of local variables (note that we do not consider local variables), and there are not different classes for
creating objects. Clearly, these changes do not affect the upper bounds or the results obtained in [25].
Rule (1 & 2) of Figure 11 evaluates the assignment of an attribute from an expression, so it behaves
like rule (ASSIGN) of Figure 2. This rules combines rules (1) and (2) from [25], that handle attribute
and local variable assignment respectively. Rule (3) of Figure 11 processes an object creation, where
newRef generates a new object identifier and newHeap creates an initial heap for an object (in our
setting all the objects are initialized with an empty heap ε). This rule is similar to rule (NEW) of
Figure 2. Rules (4) and (5) handle synchronous and asynchronous calls respectively, and are similar
to rules (SYNC) and (ASYNC) in Figure 2. In these rules, we use the notation Dx and D∗ to denote
the set of method definitions where all the return statements are decorated with the variable x or
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(1&2)
v = evale(V, h)

{ob(n, , h, 〈tv , x:=V ;S〉, Q)|R};n
x:=V {ob(n, , h[x 7→ v], 〈tv , S〉, Q)|R}

(3)
m = newRef () newHeap( , ε)

{ob(n, , h, 〈tv , x:=new;S〉, Q)|R};n
x:=new

{ob(n, , h[x 7→ m], 〈tv , S〉, Q), {ob(m, , ε, ε, ∅)|R}

(4)
(p(w̄) 7→ Sp) ∈ Dx τ = [w̄ 7→ h(n)(z̄)]

{ob(n, , h, 〈tv , call(b,p(this,z̄,x));S〉, Q)|R};n
m(z̄)

{ob(n, , h, 〈tv , Spτ ;S〉, Q)|R}

(5)
h(x) = d (p(w̄) 7→ Sp) ∈ D∗ τ = [w̄ 7→ h(z̄)] l = newFut()

{ob(n, , h, 〈tv , call(m,p(this,z̄,f));S〉, Q), ob(d, , hd, 〈tvd, Sd〉, Qd)|R};n
d.m(l,z̄)

{ob(n, , h[f 7→ l], 〈tv , S〉, Q), ob(d, , hd, 〈tvd, Sd〉, {〈[ret 7→ l], Spτ〉} ∪Qd), fut(l ,⊥)|R}

(6)
v = h(x)

{ob(n, , h, 〈tv , returnz x;S〉, Q)|R};n
returnz x {ob(n, , h[z 7→ v], 〈tv , S〉, Q)|R}

(7)]
v = h(x)

{ob(n, , h, 〈[ret 7→ l], return∗ x; 〉, Q), fut(l,⊥)|R};n
return∗ x

{ob(n, , h, ε,Q), fut(l, v)|R}

(8)
h(f) = l v 6= ⊥

{ob(n, , h, 〈tv , x:=f.get;S〉, Q), fut(l , v)|R};n
x:=f.get

{ob(n, , h[x 7→ v], 〈tv , S〉, Q), fut(l , v)|R}

(9)h(f) = l v 6= ⊥ {ob(n, , h, 〈tv , await f;S〉, Q), fut(l , v)|R};n
await f

{ob(n, , h, 〈tv , S〉, Q), fut(l , v)|R}

(10)
h(f) = l

{ob(n, , h, 〈tv , await f;S〉, Q), fut(l ,⊥)|R};n
await f

{ob(n, , h, ε, 〈tv , await f;S〉 ∪Q, fut(l ,⊥)|R}

(11)
〈tv , S〉 ∈ Q

{ob(n, , h, ε,Q)|R};n
ε {ob(n, , h, 〈tv , S〉, Qr {〈tv , S〉})|R}

Figure 11: Operational Semantics of ; from [25] adapted to our source language.

the mark ∗ respectively. Note that the future that will store the result of the asynchronous call in
rule (5) is stored in the table of local variables, related to the special symbol ret. Since our source
language does not consider local variables, this symbol will be the only one appearing in the table
of local variables tv of any closure. Rules (6) and (7) process return statements for synchronous
and asynchronous calls, and behave like rules (RETURNS ) and (RETURNA) in Figure 2. Rule (8)
handles a get statement like rule (GET). Rules (9) and (10) process await statements similarly to
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rules (AWAIT I) and (AWAIT II). Finally, rule (11) nondeterministically selects one closure from the
object’s queue when the current object is idle. This rule does not have any corresponding rule in the→
semantics in Figure 2 because that semantics automatically selects the next closure of the queue when
the current closure finishes—with rule (RETURNA)—or becomes blocked in an await statement—
with rule (AWAIT II). However, that fixed selection criterion of → is a valid choice in ;, which is
more general.

‖〈C, h〉‖ = {ob(n, , h1(n), a, t) | (n : Q) ∈ C, (a, t) = ‖Q‖q} ∪
{ob(o, , ε, ε, ∅) | o ∈ dom(h1) r objs(C)} ∪
{fut(l, v) | l ∈ dom(h2), h(l) = v}

‖ε‖q = (ε, ∅)
‖(S; l) · (Sn; ln)‖q = (〈[ret 7→ l], ‖S‖s〉, {〈[ret 7→ ln], ‖Sn‖s〉})

‖ε‖s = ε

‖x:=V ;S‖s = x:=‖V ‖v; ‖S‖s
‖x:=new;S‖s = x:=new; ‖S‖s

‖x:=f.get;S‖s = x:=f.get; ‖S‖s

‖f:=x!p(z̄);S‖s = call(m,p(x,z̄,f)); ‖S‖s
‖f:=p(z̄);S‖s = call(b,p(this,z̄, )); ‖S‖s
‖await f;S‖s = await f; ‖S‖s
‖return x;S‖s = return x; ‖S‖s

where h = (count , h1, h2), ‖V ‖v is the straightforward translation of variables, references and integer
expressions; objs(C) returns the set of object identifiers in the set C, and dom(hi) returns the domain
of the heap hi.

Figure 12: Translation from configurations 〈C, h〉 to states St in [25]

Before proving the equivalence between→-traces and ;-traces we need a translation of configu-
rations 〈C, h〉 and states St . This translation, denoted as ‖〈C, h〉‖, is detailed in Figure 12. The main
ideas of the translation are:

• Every object n in the configuration C creates an ob() quintuple where the object heap is h1(n).

• Every object o created that has not been executed yet (i.e., it appears in dom(h1) but not in
objs(C)) creates an empty ob() quintuple.

• Futures in h2 are represented as fut(l, v) pairs.

• Closures are translated straightforwardly, and the future is inserted in the table of local variables
associated to the symbol ret.

• Closures queue is translated as a set of translated closures.

Moreover, this translation can be composed with cJ·K−1 to translate Haskell configurations (h, s)
into states St , namely 〈〈(h, s)〉〉 = ‖cJ(h, s)K−1‖. We also define the notion of relevant traces of ;
steps, i.e., those that execute an actual statement.



E. Albert et al. / A Formal, Resource Consumption-Preserving Translation from Actors to Haskell 227

Definition 4.5. (Relevant trace)
Given a trace TC = St1 ;o1

S1
St2 ;o2

S2
. . . ;on−1

Sn−1
Stn we define the relevant trace of TC as those

steps that execute a statement (i.e., its decoration is different from ε):

rel(TC) = {St i ;oi
Si

St i+1|St i ;oi
Si

St i+1 ∈ TC , Si 6= ε}

With these notions we can now define the soundness of → w.r.t. ;, i.e., any →-step can be
expressed by a ;-step executing the same statement in the same object, or by two ;-steps where
the first one executes the same statement in the same object and the second does not execute any
instruction.

Lemma 4.6. (Soundness of→ w.r.t. ;)
If 〈C, h〉 →o

S 〈C ′, h′〉 then ‖〈C, h〉‖;o
S ‖〈C ′, h′〉‖ or ‖〈C, h〉‖;o

S St ;o
ε ‖〈C ′, h′〉‖

Proof:
By case distinction on the derivation applied to perform the →-step. We present only the cases for
assignment, blocked await (the only case that requires two ; steps) and synchronous calls; the re-
maining cases are analogous.

• (INTERNAL)+(ASSIGN).

(INTERNAL)

(ASSIGN)
getVal(h,n,V )=v h′=h[(n)(x)7→v]
〈n:(x:=V ;S,l)·Q,h〉→〈n:(S,l)·Q,h′〉

A ≡ 〈(n : (x:=V ;S, l) ·Q) ∪ C, h〉 →n
x:=V 〈(n : (S, l) ·Q) ∪ C, h′〉 ≡ B

The translation of A is

‖A‖ = {ob(n, , h1(n), 〈[ret 7→ l], x:=‖V ‖V ; ‖S‖s〉, Qtr)|R}

whereR is the rest of objects and future variables not involved in the step andQtr the translation
of Q. From ‖A‖ it is possible to perform a ;-step using rule (1 & 2) in Figure 11, reaching
‖B‖:

(1&2)
v = evale(‖V ‖V , h1(n))

‖A‖ ≡ {ob(n, , h1(n), 〈[ret 7→ l], x:=‖V ‖V ; ‖S‖s〉, Qtr)|R};n
x:=‖V ‖V

{ob(n, , h1(n)[x 7→ v], 〈[ret 7→ l], ‖S‖s〉, Qtr)|R} ≡ ‖B‖

Note that evale is the function in [25] that computes the value of simple right-hand sides of
assignments, so it behaves exactly like getVal(h, n, V ).

• (INTERNAL)+(AWAIT II). This case involves 2 ;-steps: one that evaluates an await f that
cannot continue and releases the object, and one that schedules the next task in the object.

(INTERNAL)

(AWAIT II) h(h(n)(f))=⊥
〈n:(await f;S,l)·Q,h〉→〈n:Q·((await f;S,l)),h〉

A ≡ 〈(n : (await f;S, l) ·Q) ∪ C, h〉 →n
await f

〈(n : Q · ((await f;S, l))) ∪ C, h〉 ≡ B
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where h(n)(f) = l. Consider that ‖Q · ((await f;S, l))‖q = (a, t), where a is the translation
of the first task in the queue and t the translation of the rest of the queue. The translation of A
is:

‖A‖ = {ob(n, , h1(n), 〈[ret 7→ l], await f; ‖S‖s〉, Qtr), fut(l ,⊥)|R}

From ‖A‖ we can perform a ;-step using rule (10) from Figure 11:

(10)
h(n)(f) = l

‖A‖ ≡ {ob(n, , h1(n), 〈[ret 7→ l], await f; ‖S‖s〉, Qtr), fut(l ,⊥)|R};n
await f

{ob(n, , h1(n), ε, 〈[ret 7→ l], await f; ‖S‖s〉 ∪Qtr), fut(l ,⊥)|R} = A′

Then from the state A′ we can apply rule (11) to schedule the first task a in the queue:

(11)
a ∈ 〈[ret 7→ l], await f; ‖S‖s〉 ∪Qtr

A′ ≡ {ob(n, , h1(n), ε, 〈[ret 7→ l], await f; ‖S‖s〉 ∪Qtr), fut(l ,⊥)|R};n
ε

{ob(n, , h1(n), a, t), fut(l ,⊥)|R} = ‖B‖

Therefore we have the two-step ;-derivation ‖A‖;n
await f A

′ ;n
ε ‖B‖.

• (INTERNAL)+(SYNC).

(INTERNAL)

(SYNC)
(m(w̄)7→Sm)∈D τ=[w̄ 7→h(n)(z̄)] S′=(̂Smτ)

x

〈n:(x:=m(z̄);S,l)·Q,h〉→〈n:(S′;S,l)·Q,h〉

A ≡ 〈(n : (x:=m(z̄);S, l) ·Q) ∪ C, h〉 →n
x:=m(z̄) 〈(n : (S′;S, l) ·Q) ∪ C, h〉 ≡ B

The translation of A is

‖A‖ = {ob(n, , h1(n), 〈[ret 7→ l], call(b,m(this,z̄, )); ‖S‖s〉, Qtr)|R}

whereR is the rest of objects and future variables not involved in the step andQtr the translation
of Q. From ‖A‖ it is possible to perform a ;-step using rule (4) in Figure 11, reaching ‖B‖:

(4)
(m(w̄) 7→ Sm) ∈ ‖D‖x τ = [w̄ 7→ h(n)(z̄)]

‖A‖ ≡ {ob(n, , h1(n), 〈[ret 7→ l], call(b,m(this,z̄, )); ‖S‖s〉, Qtr)|R};n
m(z̄)

{ob(n, , h1(n), 〈[ret 7→ l], Smτ ; ‖S‖s〉, Qtr)|R} ≡ ‖B‖

‖D‖xsync is the translation of all the methods in the program D where methods are treated
synchronously, i.e., they store a final value in the attribute x. We consider a simplification of
the operational semantics in [25] where synchronous methods return exactly one value, thus the
last instruction of a synchronous method stores the final value in the corresponding attribute. In
this case is easy to check that ‖(̂Smτ)

x
‖ = Smτ . ut

The previous lemma can be extended to traces considering only the relevant steps that execute
actual statements (i.e., ignoring ; steps decorated with ε):
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Lemma 4.7. If T = A1 →o1
S1
A2 →o2

S2
. . . →on−1

Sn−1
An then there is a trace TC = ‖A1‖ ;∗ ‖An‖

such that rel(TC) = ‖A1‖;o1
S1
‖A2‖;o2

S2
. . . ;on−1

Sn−1
‖An‖.

Proof:
Straightforward by induction on the number of steps in the trace T , and applying Lemma 4.6. ut

Finally, we can state the soundness of the cost upper bound w.r.t. a sequence of eval steps. Con-
sidering a cost modelM, we denote by UBo

M the upper bound on the cost of any execution starting
from the main method restricted to object o. Therefore the soundness of upper bounds is stated as:

Theorem 4.8. (Upper bound soundness)
Let P be a program and TE a sequence of n− 1 eval steps starting from the main method such that:

1) nextObject(hi, si) = oi,
2) eval oi hi = (resi, li, hi+1),
3) si+1 = updL(si, oi, li).

Then C(TE , oi,M) ≤ UBoi
M for every object oi.

Proof:
By Theorem 4.3 there is a trace executing the same statements (recall that we assimilate Si and resi )

T = cJ(h1, s1)K−1 →o1
S1

cJ(h2, s2)K−1 →o2
S2
. . .→on−1

Sn−1

cJ(hn, sn)K−1

By Lemma 4.7 there is a trace TC = ‖cJ(h1, s1)K−1‖ ;∗ ‖cJ(hn, sn)K−1‖ executing the same state-
ments in the same objects as T , therefore C(M, oi, T ) = C(M, oi, TC) for every object oi. Theorem 3
from [25] states that C(M, o, TC) ≤ UBo

M for every object oi, and TE executes the same statements
as T in the same objects, so C(M, oi, TE) = C(M, oi, T ). Therefore, for every object oi we can
conclude that C(M, oi, TE) = C(M, oi, T ) = C(M, oi, TC) ≤ UBo

M. ut

5. Experimental evaluation

In the previous section, we proved that the execution of compiled Haskell programs has the same re-
source consumption as the original ABS traces wrt. any concrete cost modelM, i.e., both programs
execute the same ABS statements in the same order and in the same objects. However, cost models
are defined in terms of ABS statements so they are unaware of low-level details of the Haskell runtime
environment as β-reductions or garbage collection. Studying the relation between cost models and
some significant low-level details of the Haskell runtime in a formal way is an interesting line left
for future work. In this section we address empirically one particular topic: the Haskell runtime does
not introduce additional overhead, i.e., the execution of one ABS statement requires only a constant
amount of work. In order to evaluate this hypothesis, we have elaborated programs4 with different
asymptotic costs and measured the number of the source language’s statements executed (steps) and

4The ABS-subset experimental programs and measurements together with the target language and runtime environment can
be found at http://github.com/abstools/abs-haskell-formal.
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Figure 13: Execution steps, upper bound, and time (Intelr CoreTM i7-4790 at 3.60GHz, 16 GB).
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their wallclock runtime to program completion. The Integer part of logarithm is a simple approxima-
tion of the computation log2 n with has the same complexity O(log n). The Primality test computes
the primality of a number n: the program creates n objects and checks every possible divisor of n
on each object. The difference is that the low parallelism version awaits for the result of one divisor
before invoking the next check and the high parallelism version does not. Both programs have a O(n)
cost. The Logarithms in a range program computes the integer part of the logarithm of n numbers,
so it has cost O(n.log n). Primes in a range computes the prime numbers in the interval [1..n], thus
having a O(n2) cost. Finally, the Hanoi program solves the Tower of Hanoi puzzle with n being the
number of disks to be placed; the complexity of the solution to Hanoi is of the class O(2n).

We have tested the programs with n ranging from 500 to 5000 (except Hanoi, where due to its
high complexity we have used sizes from 2 to 20), running 20 experiments for every value of n, and
measured the time. This is plotted in the cross line (right margin) in Figure 13. The plot represents
the mode times and the minimum and maximum times as whiskers. We have also measured the
actual number of steps, represented in the square line (left margin) in Figure 13.5 These two plots
show that the execution time and the number of executed steps grows with a similar rate in all the
programs, independently of their asymptotic cost, thus confirming that the compilation does not incur
any overhead. It is worth to note that the results to the Integer part of logarithm show a high margin
of error in the measurements of the Haskell execution runtime, and thus cannot reveal the expected
logarithmic grow of execution time. This happens for a number of reasons: to keep the size n uniform
among the programs tested, the range 500 to 5000 is computationally very similar for the log(n)
problem. Second of all, our runtime measurement tool has a precision of a millisecond which is
not enough for this particular range. Furthermore, we have measured the overall wall-clock time
of executing the tested programs and that includes any garbage collection overhead incurred by the
Haskell runtime system; the Haskell-GHC garbage collector is difficult to control and for that, we used
a large allocation area so as to minimize its effects.

We have also plotted the resource bounds obtained by the SACO tool [9] for the different values
of n (triangle line, left margin in Figure 13). SACO can analyze full ABS programs and thus also the
subset considered in this article, and allows the selection of the cost model of interest. In this case,
we have analyzed the original ABS programs using the cost model that obtains the number of ABS
statements executed. As can be appreciated, the upper bounds are sound and overapproximate the ac-
tual number of executed statements, and they deviate from the actual cost by a multiplicative constant
factor (i.e., the complexity class is preserved). Such a multiplicative constant deviation between the
upper bounds and the actual number of statements executed is explained for two reasons. First, the
SACO tool considers constructor methods, i.e., methods that are invoked on every new object, so the
SACO tool will count a constant number of extra statements whenever a new object is created. How-
ever, the main source of imprecision are branching points and loops where SACO combines different
fragments of information. A clear example are loops like the one in the Primes in a range program.
The main loop checks if a number i ∈ [1..n] is a prime number on each iteration, and this check needs
the execution of i statements. In this situation, SACO considers that every iteration has the maximum

5Note that the number of steps in the left margin is usually multiplied by some factor (105, 107, and 108) that appears on
top of the margin.
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cost (n statements) and generates an upper bound of n2 instead of the more precise (but asymptotically
equivalent) expression 1 + 2 + . . .+ n.

6. Related work

The described target language is an untyped extract of the canonical ABS-Haskell backend [11], with
the main difference being that ABS statements are translated to an AST interpreted by eval func-
tion, while the canonical version compiles statements down to native code, which naturally yields
faster execution. However, this deep embedding of an AST allows multiple interpretations of the syn-
tax: debug the syntax tree and have an equivalence result. At runtime, the eval function operates in
“lockstep” (i.e. executing one CPS statement at a time) whereas the canonical backend applies CPS
between release points (await, get and return from asynchronous calls) which benefits in perfor-
mance but would otherwise make reasoning about correctness and resource preservation for this setup
more involved. Another argument for lockstep execution is that we can “simulate” a global Haskell-
runtime scheduler (with a N:1 threading model) and include it in our proofs, instead of reasoning for
the lower-level C internals of the GHC runtime thread scheduler (with M:N parallelism).

Our target language is also related to Coroutining Logic Engines presented in [26] for concurrent
Prolog. These engines encapsulate multi-threading by providing entities that evaluate goals and yield
answers when requested. They follow a similar coroutining approach, however, logic engines can
produce several results, whereas asynchronous methods can be suspended by the scheduler many
times but they only generate one result when they finish.

We used the Haskell language to implement the structural operational semantics of ABS for the
execution of ABS programs. Different high-level executable languages are used to implement the
operational semantics of programming languages, e.g., Maude [27] and K [28] which are based on
rewrite logic, and the interactive theorem provers HOL [29] and Cog [30]. The Coq proof assistant
has been used in [31] to prove that a compiler translating a subset of C programs to assembly code
preserves the semantics. In this article, we have showed that the results of the static analysis of the
resource consumption of ABS programs extended with a cost model also hold at runtime as provided
by the Haskell language.

7. Conclusion and future work

We have presented an actor-based language with cooperative scheduling (a subset of ABS) and its
compilation to Haskell using continuations. The compilation is formalized in order to establish that
the program behavior and the resource consumption are preserved by the translation. Compared to the
only other formalized ABS backend [2] (in Maude), our Haskell translation admits the preservation of
resource consumption, and as a side benefit, makes uses of an overall faster backend.6

In the future, we plan to extend our formalization to accommodate full ABS, both in terms of the
omitted parts of the language as well as the non-deterministic behavior of a multi-threaded scheduler,

6http://abstools.github.io/abs-bench keeps an up-to-date benchmark of all ABS backends.
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e.g. by broadening our simulated scheduler to non-determinism, and perhaps (M:N) thread paral-
lelism. Another consideration is to relate our resource-preservation result to a distributed-object ex-
tension of ABS [11]; specifically, how the resource analysis translates to network transport costs after
any network optimizations or protocol limitations. Finally, we plan to formally relate the ABS cost
models used to define the cost of a trace and some of the low-level runtime details of the Haskell
runtime like β-reductions, garbage collections or main memory usage. Thus, we could express trace
costs and upper bounds in terms closer to the actual running environment.

References
[1] Lorincz K, Chen Br, Waterman J, Werner-Allen G, Welsh M. Resource Aware Programming in the Pixie

OS. In: Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems, SenSys ’08.
ISBN 978-1-59593-990-6, 2008 pp. 211–224.
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[25] Albert E, Arenas P, Correas J, Genaim S, Gómez-Zamalloa M, Puebla G, Román-Dı́ez G. Object-Sensitive
Cost Analysis for Concurrent Objects. Software Testing, Verification and Reliability, 2015. 25(3):218–271.
doi:10.1002/stvr.1569.

[26] Tarau P. Coordination and Concurrency in Multi-engine Prolog. In: Proc. COORDINATION ’11, LNCS
6721. Springer. ISBN 978-3-642-21463-9, 2011 pp. 157–171.

[27] Meseguer J. Twenty years of rewriting logic. J. Log. Algebr. Program., 2012. 81(7-8):721–781.

[28] Rosu G. K: A Semantic Framework for Programming Languages and Formal Analysis Tools. In: Depend-
able Software Systems Engineering, pp. 186–206. IOS Press, 2017. doi:10.3233/978-1-61499-810-5-186.

[29] Nipkow T, Paulson LC, Wenzel M. Isabelle/HOL - A Proof Assistant for Higher-Order Logic, volume
2283 of Lecture Notes in Computer Science. Springer, 2002.
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