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Abstract. We present a formal translation of an actor-based language
with cooperative scheduling to the functional language Haskell. The trans-
lation is proven correct with respect to a formal semantics of the source
language and a high-level operational semantics of the target, i.e. a sub-
set of Haskell. The main correctness theorem is expressed in terms of a
simulation relation between the operational semantics of actor programs
and their translation. This allows us to then prove that the resource
consumption is preserved over this translation, as we establish an equiv-
alence of the cost of the original and Haskell-translated execution traces.

1 Introduction

Abstract Behavioural Specification (ABS) [9] is a formally-defined language for
modeling actor-based programs. An actor program consists of computing enti-
ties called actors, each with a private state, and thread of control. Actors can
communicate by exchanging messages asynchronously, i.e. without waiting for
message delivery/reply. In ABS, the notion of actor corresponds to the active
object, where objects are the concurrency units, i.e. each object conceptually
has a dedicated thread of execution. Communication is based on asynchronous
method calls where the caller object does not wait for the callee to reply with the
method’s return value. Instead, the object can later use a future variable [8,5] to
extract the result of the asynchronous method. Each asynchronous method call
adds a new process to the callee object’s process queue. ABS supports coopera-
tive scheduling, which means that inside an object, the active process can decide
to explicitly suspend its execution so as to allow another process from the queue
to execute. This way, the interleaving of processes inside an active object is tex-
tually controlled by the programmer, similar to coroutines [10]. However, flexible
and state-dependent interleaving is still supported: in particular, a process may
suspend its execution waiting for a reply to a method call.
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Whereas ABS has successfully been used to model [19], analyze [2], and ver-
ify [9] actor programs, the “real” execution of such programs has been a struggle,
attributed to the fact that implementing cooperative scheduling efficiently can
be hard (common languages as Java and C++ have to resort to instrumentation
techniques, e.g. fibers [16]). This led to the creation of numerous ABS backends
with different cooperative scheduling implementations:3 ABS→Maude using an
interpreter and term rewriting, ABS→Java using heavyweight threads and man-
ual stack management, ABS→Erlang using lightweight threads and thread park-
ing, ABS→Haskell using lightweight threads and continuations.

The overall contribution of this paper is a formal, resource-consumption pre-
serving translation of the concurrency subset of the ABS language into Haskell,
given as an adaptation of the canonical ABS→Haskell backend [4]. We opted for
the Haskell backend relying on the hypothesis that Haskell serves as a better
middleground between execution speed and most importantly semantic correct-
ness. The translation is based on compiling ABS methods into Haskell functions
with continuations—similar transformations have been performed in the actor-
based Erlang language wrt. rewriting systems [14,18] and rewriting logic [13], in
the translation of ABS to Prolog [3] and a subset of ABS to Scala [11]. However,
what is unique in our translation and constitutes our main contribution, is that
the translation is resource preserving as we prove in two steps:

– Soundness. We provide a formal statement of the soundness of this transla-
tion of ABS into Haskell which is expressed in terms of a simulation relation
between the operational ABS semantics and the semantics of the generated
Haskell code. The soundness claim ensures that every Haskell derivation has
an equivalent one in ABS. However, since for efficiency reasons, the trans-
lation fixes a selection order between the objects and the processes within
each object, we do not have a completeness result.

– Resource-preservation. As a corollary we have that the transformation pre-
serves the resource consumption, i.e., the cost of the Haskell-translated pro-
gram is the same as the original ABS program wrt. any cost model that
assigns a cost to each ABS instruction, since both programs execute the
same trace of ABS instructions. This result allows us to ensure that upper
bounds on the resource consumption obtained by the analysis of the original
ABS program are preserved during compilation and are thus valid bounds
for the Haskell-translated program as well.

In Section 2 we specify the syntax of the source language and detail its opera-
tional semantics. Section 3 describes our target language and defines the com-
pilation process. We present the correctness and resource preservation results
in Section 4, as well as the intermediate semantics used in this process. In Sec-
tion 5 we show that the runtime environment does not introduce any significant
overhead when executing ABS instructions, and show that the upper bounds

3 See http://abs-models.org/documentation/manual/#-abs-backends for more in-
formation about ABS backends.

http://abs-models.org/documentation/manual/#-abs-backends


S ::= x:=E | f:=x!m(ȳ)
| await f | skip | return z
| S1;S2 | if B {S} else {S}
| while B {S}

E ::= V | new | f.get | m(ȳ)
V ::= x | r | I
B ::= B ∧B | B ∨B | ¬B | V ≡ V
D ::= m(r̄){ S }
P ::= D : main(){ S }

1 main() {

2 node1 = new;

3 node2 = new;

4 f1 = node1!map(v1);

5 f2 = node2!map(v2);

6 await f1;

7 await f2;

8 r1 = f1.get;

9 r2 = f2.get;

10 r = reduce(r1,r2);

11 return r; }

12

13 map(v) {

14 ... }

15 reduce(v1,v2) {

16 ... }

Fig. 1: (a) syntax of source language (b) a simplified MapReduce task in ABS

obtained by the cost analysis are sound. Finally, Section 6 contains the conclu-
sions and future work. Complete proofs of the theoretical results can be found
at http://gpd.sip.ucm.es/enrique/publications/lopstr16_ext.pdf.

2 Source language

Our language is based on ABS [9], a statically-typed, actor-based language with
a purely-functional core (ADTs, functions, parametric polymorphism) and an
object-based imperative layer: objects with private-only attributes, and inter-
faces that serve as types to the objects. ABS extends the OO paradigm with
support for asynchronous method calls; each call results in a new future (place-
holder for the method’s result) returned to the caller-object, and a new process
(stored in the callee-object’s process queue) which runs the method’s activation.
The active process inside an object (only one at any given time) may decide to
explicitly suspend its execution so as to allow another process from the same
queue to execute.

In this paper, we simplify ABS to its subset that concerns the concurrent
interaction of processes (inside and between objects), so as to focus solely on the
more challenging part of proving correctness of the cooperative concurrency. In
other words, the ABS language is stripped of its functional core, local variables,
object groups [15] and types (we assume the input programs are well-typed w.r.t
ABS type-system). The formal syntax of the statements S of the subset is shown
in Fig. 1(a). Values in our subset are references (object or futures) and integer
numbers; values can be stored in method’s formal parameters or attributes.
We syntactically distinguish between method parameters r and attributes. The
attributes are further distinguished for the values they hold: attributes holding
object references or integer values (denoted by x, y, z . . .), and future attributes
holding future references (denoted by f). An assignment f:=x!m(ȳ) stores to
the future attribute f a new future reference returned by asynchronously calling
the method m on the object attribute x passing as arguments the values of
object attributes ȳ. An assignment x:=E stores to an object attribute the result
of executing the right-hand side E. A right-hand side can be the value of a
method parameter r, an attribute x, an integer expression I (an integer value,
addition, subtraction, etc.), a reference to a new object new, the result of a
synchronous same-object method call m(ȳ), or the result of an asynchronous

http://gpd.sip.ucm.es/enrique/publications/lopstr16_ext.pdf


method call f .get stored in the future attribute f . A call to f .get will block the
object and all its processes until the result of the asynchronous call is ready. The
statement await f may be used (usually before calling f .get ) to instead release
the current process until the result of f has been computed, allowing another
same-object process to execute. Sequential composition of two statements S1 and
S2 is denoted by S1;S2. The Boolean condition B in the if and while statement is
a Boolean combination of reference equality between values of attributes. Again,
note that, we assume expressions to be well-typed: integer expressions cannot
contain futures or object references and boolean equality is between same-type
values. The statement return z returns the value of the attribute z both in
synchronous and asynchronous method calls. A method declaration D maps
a method’s name and formal parameters to a statement S (method body). We
consider that every method has one return and it is the final statement. Finally,
a program P is a set of method declarations D̄ and a special method main that
has no formal parameters and acts as the program’s entry point.

The program of Fig. 1(b) shows a basic version of a MapReduce task [7]
implemented using actors in ABS. For clarity the example uses only two map
nodes and a single reduce computation performed in the controller node (the
actor running main). First the controller creates two objects node1 and node2

(L2–L3), and invokes asynchronously map with different values v1 and v2 (L4–
L5). In MapReduce, all map invocations must finish before executing the reduce
phase: therefore, the await instructions in L6–L7 wait for the termination of
the two calls to map, releasing the processor so that any other process in the
same object of main can execute. Once they have finished, the get statements in
L8-L9 obtain the results from the futures f1 and f2. Although get statements
block the object (in this case main) and all of its processes until the result is
ready, this does not occur in our example because the preceding awaits assure
the result is available. Finally, L10 contains a synchronous-method self call to
reduce that combines the partial results from the map phase.

2.1 Operational semantics

In order to describe the operational semantics of the language defined above we
first introduce the following concepts and assumptions. The values considered
in this paper are in the Int set: integer constants and dynamically generated
references to objects and futures. We denote by Σ = IVar → Int the set of as-
signments of values to the instance variables (of an object), with typical element
σ and empty element ε. A closure consists of a statement S obtained by replacing
its free variables by actual values (note that variables are introduced as method
parameters and can only appear in E) and a future reference, represented by an
integer, for storing the return value. By Sτ , where τ ∈ LVar → Int , we denote
the instantiation obtained from S by replacing each variable x in S by τ(x). Fi-
nally, we represent the global heap h by a triple (n, h1, h2) consisting of a natural
number n and partial functions (with finite disjoint domains) h1 : Int → Σ and
h2 : Int → Int⊥, where Int⊥ = Int∪{⊥} (⊥ is used to denote “undefined”). The
number n is used to generate references to new objects and futures. The function



(Assign)
getVal(h(n), V ) = v h′ = h[(n)(x) 7→ v)]

〈n : (x:=V ;S, l) ·Q,h〉 → 〈n : (S, l) ·Q,h′〉

(New)
h(count) = m h′ = h[(n)(x) 7→ m, (m) 7→ ε, count 7→ m+ 1]

〈n : (x:=new;S, l) ·Q,h〉 → 〈n : (S, l) ·Q,h′〉

(Get)
h(h(n)(f)) 6= ⊥ h′ = h[(n)(x) 7→ h(h(n)(f))]

〈n : (x:=f.get;S, l) ·Q,h〉 → 〈n : (S, l) ·Q,h′〉

(Await I)
h(h(n)(f)) 6= ⊥

〈n : (await f;S, l) ·Q,h〉 → 〈n : (S, l) ·Q,h〉

(Await II)
h(h(n)(f)) = ⊥

〈n : (await f;S, l) ·Q,h〉 → 〈n : Q · (await f;S, l), h〉

(Async)

h(n)(x) = d h(count) = l′ v̄ = h(n)(z̄)
h′ = h[(n)(f) 7→ l′, (l′) 7→ ⊥, count 7→ l′ + 1]

〈n : (f:=x!m(z̄);S, l) ·Q,h〉 d.m(l′,v̄)−→ 〈n : (S, l) ·Q,h′〉

(Sync)
(m(w̄) 7→ Sm) ∈ D τ = [w̄ 7→ h(n)(z̄)] S′ = (̂Smτ)

x

〈n : (x:=m(z̄);S, l) ·Q,h〉 → 〈n : (S′;S, l) ·Q,h〉

(ReturnA)
h′ = h[(l) 7→ h(n)(x)]

〈n : (return∗x;S, l) ·Q,h〉 → 〈n : Q,h′〉

(ReturnS)
h′ = h[(n)(z) 7→ h(n)(x)]

〈n : (returnz x;S, l) ·Q,h〉 → 〈n : (S, l) ·Q,h′〉

Fig. 2: Operational semantics: Local rules

h1 specifies for each existing object, i.e., a number n such h1(n) is defined, its
local state. The function h2 specifies for each existing future reference, i.e., a
number n such h2(n) is defined, its return value (absence of which is indicated
by ⊥). In the sequel we will simply denote the first component of h by h(count),
and write h(n)(x), instead of h1(n)(x), and h(n), instead of h2(n). We will use
the notation h[count 7→ n] to generate a heap equal to h but with the counter set
to n. A similar notation h[n 7→ ⊥] will be used for future variables, h[(n)(x) 7→ v]
for storing the value v in the variable x in object n and h[n 7→ ε] for initializing
the mapping of an object.

An object’s local configuration denoted by the (object) reference n consists
of a pair 〈n : Q, h〉 where Q is a list of closures and h is the global heap.
We use · to concatenate lists, i.e., (S, l) · Q represents a list where (S, l) is the
head and Q is the tail. A global configuration—denoted with the letters A and
B—is a pair 〈C, h〉 containing a set of lists of closures C = {Q} and a global
heap h. Fig. 2 contains the relation that describes the local behavior of an
object (omitting the standard rules for sequential composition, if and while

statements). Note that the first closure of the list Q is the active process of the
object, so the different rules process the first statement of this closure. When
the active process finishes or releases the object in an await statement, the
next process in the list will become active, following a FIFO policy. The rule



(Internal)
〈n : Q,h〉 → 〈n : Q′, h′〉

〈(n : Q) ∪ C, h〉 → 〈(n : Q′) ∪ C, h′〉

(Message)

〈n : Qn, h〉
d.m(l′,v̄)−→ 〈n : Q′, h′〉

m(w̄) 7→ Sm ∈ D τ = [w̄ 7→ v̄] S′ = (̂Smτ)
∗

〈(n : Qn) ∪ (d : Qd) ∪ C, h〉 → 〈(n : Q′) ∪ (d : Qd · (S′, l′)) ∪ C, h′〉

Fig. 3: Operational semantics: Global rules

(Assign) modifies the heap storing the new value of variable x of object n. It
uses the function getVal(Σ,V ) to evaluate an expression V involving integer
constants and variables in the object’s current state Σ. The (New) rule stores a
new object reference in variable x, increments the counter of objects references
and inserts an empty mapping ε for the variables of the new object m. Rule
(Get) can only be applied if the future is available, i.e., if its value is not ⊥. In
that case, the value of the future is stored in the variable x. Both rules (Await
I) and (Await II) deal with await statements. If the future f is available, it
continues with the same process. Otherwise it moves the current process to the
end of the queue, thus avoiding starvation. Note that the await statement is not
consumed, as it must be checked when the process becomes active again. When
invoking the method m asynchronously in rule (Async) the destination object
d and the values of the parameters r̄ are computed. Then a new future reference
l initialized to ⊥ is stored in the variable f , and the counter is incremented.
The information about the new process that must be created is included as the
decoration d.m(l′, v̄) of the step. Synchronous calls—rule (Sync)—extend the
active task with the statements of the method body, where the parameters have
been replaced by their value using the substitution τ . In order to return the
value of the method and store it in the variable x, the return statement of the
body is marked with the destination variable x, called write-back variable. This
marking is formalized in the ·̂s function, defined as follows (recall that return

is the last statement of any method):

Ŝs =

 S1; Ŝ2

s
if S = S1;S2,

returns z if S = return z,
S i.o.c.

Rule (ReturnA) finishes an asynchronous method invocation (in this case the
return keyword is marked with *, see rule (Message) in Fig. 3), so it removes
the current process and stores the final value in the future l. On the other hand,
rule (ReturnS) finishes a synchronous method invocation (marked with the
write-back variable), so it behaves like a z:=x statement.

Based on the previous rules, Fig. 3 shows the relation describing the global
behavior of configurations. The (Internal) rule applies any of the rules in
Fig. 2, except (Async), in any of the objects. The (Message) rule applies the

rule (Async) in any of the objects. It creates a new closure (Ŝmτ
∗
, l′) for the

new process invoking the method m, and inserts it at the back of the list of
the destination object d. Note the use of ·̂∗ to mark that the return statement
corresponds to an asynchronous invocation. Note that in both (Internal) and



(Message) rules the selection of the object to execute is non-deterministic.
When needed, we decorate both local and global steps with object reference n
and statement S executed, i.e., 〈n : Q, h〉 →n

S 〈n : Q′, h′〉 and 〈C, h〉 →n
S 〈C ′, h′〉.

We remark that the operational semantics shown in Fig. 2 and 3 is very sim-
ilar to the foundational ABS semantics presented in [9], considering that every
object is a concurrent object group. The main difference is the representation of
configurations: in [9] configurations are sets of futures and objects that contain
their local stores, whereas in our semantics all the local stores and futures are
merged in a global heap. Finally, our operational semantics considers a FIFO
policy in the processes of an object, whereas [9] left the scheduling policy un-
specified.

3 Target language

Our ABS subset is translated to Haskell with coroutines. A coroutine is a gen-
eralization of a subroutine: besides the usual entry-point/return-point of a pro-
cedure a coroutine can have other entry/exit points, at intermediate locations
of the procedure’s body. Simply put, a coroutine does not have to run to com-
pletion; the programmer can specify places where a coroutine can suspend and
later resume exactly where it left off.

Coroutines can be implemented natively on top of programming languages
that support first-class continuations (which subsequently require support for
closures and tail-call optimization). A continuation with reference to a program’s
point of execution, is a datastructure that captures what the remaining of the
program does (after the point). As an example, consider the Haskell program at
Fig. 4(a). The continuation of the call to (even 3) at L2 is λa→print a, assuming
a is the result of call to even and the continuation is represented as a function.
The continuation of (mod x 2) at L1 is the function λa→print (eq a 0) where x

is bound by the even function and a is the result of (mod x 2). Abstracting over
any program, an expression with type expr :: a has a continuation k with type
k ::( a→r) with a being the expression’s result type and r the program’s overall
result type. To benefit from continuations (and thus coroutines), a program has
to be transformed in the so-called continuation-passing style (CPS): a function
definition of the program f :: args→a is rewritten to take its current continuation
as an extra last argument, as in f ’:: args→(a→r)→r. A function call is also
rewritten to apply this extra argument with the actual continuation at point.

A CPS transformation can be applied to all functions of a program, as in the
example of Fig. 4(b), or (for efficiency reasons) to only the subset that relies on
continuation support, e.g. only those functions that need to suspend/resume. For
our case, ABS is translated to Haskell with CPS applied only to statements and
methods, but not (sub)expressions. Continuations have the type k :: a→Stm where
Stm is a recursive datatype with each one of its constructors being a statement,
and the recursive position being the statement’s current continuation. Stm being
the program’s overall result type (Stm≡r), reveals the fact that the translation of
ABS constructs a Haskell AST-like datatype “knitted” with CPS (Fig. 5), which
will only later be interpreted at runtime (Sec 3.1): capturing the continuation of



1 even x = eq (mod x 2) 0

2 main = print (even 3)

mod’ x y k = k (mod x y)

eq’ x y k = k (eq x y)

even’ x k = mod’ x 2 (λ a → eq’ a 0 k)

main = even’ 3 (λ a → print a)

Fig. 4: (a) Example program in direct style and (b) translated to CPS

an ABS process allows us to save the process’ state (e.g. call stack) and rest of
statements as data. For technical convenience, our statements and methods do
not directly pass results among each other but only indirectly through the state
(heap); thus, we can reduce our continuation type to k ::()→Stm and further
to the “nullary” function k :: Stm. Accordingly the CPS type of our methods
(functions) and statements (constructors) becomes f ’:: args→Stm→Stm. Worth
to mention in Fig. 5 is that the body of While statement and the two branch
bodies of If can be thought of as functions with no args written also in CPS
(thus type Stm → Stm) to “tie” each body’s last statement to the continuation
after executing the control structure.

A Method definition is a CPS function that takes as input a list [Ref] of
the method’s parameters (passed by reference), the callee object named this,
a writeback reference (Maybe Ref), and last its current continuation Stm. In
case of synchronous call the callee method indirectly writes the Return value
to the writeback reference of the heap and the execution jumps back to the
caller by invoking the method’s continuation; in case of asynchronous call the
writeback is empty, the return value is stored to the caller’s future (destiny) and
the method’s continuation is invoked resulting to the exit of the ABS process. An
object or future reference Ref is represented by an integer index to the program’s
global heap array; similarly, an object attribute Attr is an integer index to
an internal-to-the-object attribute array, hence shallow-embedded (compared to
embedding the actual name of the attribute). Values (V) in our language can be
this-object attributes (A), parameters to the method (P), integer literals (I), and
integer arithmetic on those values (Add, Sub...). The right-hand side (Rhs) of an
assignment directly reflects that of the source language. Boolean expressions are
only appearing as predicates to If and While and are inductively constructed
by the datatype B, that represents reference and integer comparison.

The compilation of statements is shown in Fig. 6. The translation sJSKk,wb

takes two arguments: the continuation k and the writeback reference wb. Each
statement is translated into its Haskell counterpart, followed by the continuation
k. The multiple rules for the return statement are due to the different uses
of the translation: when compiling methods the return statement will appear
unmarked, so we include the writeback passed as an argument; otherwise it
is used to translate runtime configurations, so return statements will appear
marked and we generate the writeback related to the mark. When omitted, we
assume the default values k = undefined and wb = Nothing for the sJSKk,wb

translation. BJBK represents the translation of a boolean expression B, and V JV K
the translation of integer expressions, references or variables. A method definition
translates to a Haskell function that includes the compiled body.



type Method = [Ref] → Ref → Maybe Ref →
:::
Stm → Stm

data Stm where −− (formatted in GADT syntax)
Skip ::

:::
Stm → Stm

Await :: Attr →
::
Stm → Stm

Assign :: Attr → Rhs →
:::
Stm → Stm

If :: B → (
:::
Stm→Stm) → (

:::
Stm→Stm) →

:::
Stm → Stm

While :: B → (
:::
Stm→Stm) →

:::
Stm → Stm

Return :: Attr → Maybe Ref →
:::
Stm → Stm

data Rhs = Val V

| New

| Get Attr

| Async Attr Method [Attr]

| Sync Method [Attr]

type Ref = Int

type Attr = Int

data B = B :∧ B | B :∨ B | :¬ B | V :≡ V

data V = A Ref | P Ref | I Int

| Add V V | Sub V V ...

Fig. 5: The syntax and types of the target language. Continuations are

::::::::::::::
wave-underlined. The program/process final result type is double-underlined

sJx:=V Kk,wb = Assign x V JV K k sJskipKk,wb = Skip k
sJx:=newKk,wb = Assign x New k sJawait fKk,wb = Await f k

sJx:=f.getKk,wb = Assign x (Get f) k sJreturn xKk,wb = Return x wb k
sJx:=y!m(z̄)Kk,wb = Assign x (Async y m z̄) k sJreturn∗ xKk,wb = Return x Nothing k

sJx:=m(z̄)Kk,wb = Assign x (Sync m z̄) k sJreturnz xKk,wb = Return x (Just z) k
sJS1;S2Kk,wb = sJS1Kk′,wb with k′ = sJS2Kk,wb

sJif B {S1} else {S2}Kk,wb = If
BJBK (\k′ → sJS1Kk′,wb) (\k′ → sJS2Kk′,wb) k

sJwhile B {S}Kk,wb = While
BJBK (\k′ → sJSKk′,wb) k

mJmK = (m l this wb k = sJSmKk,wb)
where m(w̄) 7→ Sm ∈ D and l is the Haskell list that contains
the same elements as the sequence w̄

Fig. 6: Translation of ABS-subset programs to Haskell AST

3.1 Runtime execution

The program heap is implemented as the triple: array of objects, array of fu-
tures and a Int counter. Every cell in the objects-array designates 1 object
holding a pair of its attribute array and process queue (double-ended) in Haskell
IOVector (IOVector Ref, Seq Proc). A cell in futures-array denotes a future
which is either unresolved with a number of listener-objects awaiting for it to be
completed, or resolved with a final value, i.e. IOVector (Either [Ref] Ref).
An ever-increasing counter is used to pick new references; when it reaches the
arrays’ current size both of the arrays double in size (i.e. dynamic arrays). The
size of all attribute arrays, however, is fixed and predetermined at compile-time,
by inspecting the source code (as shown in L18 of Fig.7).

An eval function accepts a this object reference and the current heap and
executes a single statement of the head process in the process queue, return-
ing a new heap and those objects that have become active after the execution
(eval this heap :: IO (Heap, [Ref]). An await executed statement will put
its continuation (current process) in the tail of the process queue, effectively en-



1 main, map, reduce :: Method

2 main [] this wb k =

3 Assign node1 New $
4 Assign node2 New $
5 Assign f1 (Async node1 map [v1])$
6 Assign f2 (Async node2 map [v2])$
7 Await f1 $
8 Await f2 $
9 Assign r1 (Get f1) $

10 Assign r2 (Get f2) $
11 Assign r (Sync reduce [r1,r2]) $
12 Return r wb k

13

14 map [v] this wb k = ...

15 reduce [a,b] this wb k = ...

16

17 −− Position in the attribute array
18 [node1,node2,f1,f2,r1,r2,r] = [0..]

Fig. 7: The Haskell-translated running example of MapReduce

abling cooperative multitasking, whereas all others will keep it as the head. A
Return executed statement originating from an asynchronous call is responsible
for re-activating the objects that are blocked on its resolved future. A global
scheduler “trampolines” over a queue of active objects: it calls eval on the head
object, puts the newly-activated objects in the tail of the queue, and loops until
no objects are left in the queue—meaning the ABS program is either finished or
deadlocked. At any point in time, the pair of the scheduler’s object queue with
the heap comprise the program’s state.

Comparison. The described target language is an untyped extract of the canoni-
cal ABS-Haskell backend [4], with the main difference being that ABS statements
are translated to an AST interpreted by eval function, while the canonical ver-
sion compiles statements down to native code, which naturally yields faster exe-
cution. However, this deep embedding of an AST allows multiple interpretations
of the syntax: debug the syntax tree and have an equivalence result. At runtime,
the eval function operates in “lockstep” (i.e. executing one CPS statement at a
time) whereas the canonical backend applies CPS between release points (await,
get and return from asynchronous calls) which benefits in performance but
would otherwise make reasoning about correctness and resource preservation for
this setup more involved. Another argument for lockstep execution is that we
can “simulate” a global Haskell-runtime scheduler (with a N:1 threading model)
and include it in our proofs, instead of reasoning for the lower-level C internals
of the GHC runtime thread scheduler (with M:N parallelism).

Our target language is also related to Coroutining Logic Engines presented
in [17] for concurrent Prolog. These engines encapsulate multi-threading by pro-
viding entities that evaluate goals and yield answers when requested. They follow
a similar coroutining approach, however, logic engines can produce several re-
sults, whereas asynchronous methods can be suspended by the scheduler many
times but they only generate one result when they finish.

4 Correctness and Resource Preservation

To prove that the translation is correct and resource preserving, we use an inter-
mediate semantics � closer to the Haskell programs. This semantics, depicted



(Assign)

nextObject(h, [om]) = on h(on)(Q) = (Assign x V k′, l) · q
getVal(h(on), V ) = v h′ = h[(on)(x) 7→ v, (on)(Q) 7→ (k′, l) · q]

(h, [om]) � (h′, [on+1→m] : [o1→n])

(New)

nextObject(h, [om]) = on h(on)(Q) = (Assign x New k′, l) · q
h(count) = onew h′ = h[(on)(x) 7→ onew, count 7→ onew + 1,

(onew)(Q) 7→ ε, (on)(Q) 7→ (k′, l) · q]
(h, [om]) � (h′, [on+1→m] : [o1→n])

(Get)

nextObject(h, [om]) = on h(on)(Q) = (Assign x (Get f) k′, l) · q
h(h(on)(f)) = Right v h′ = h[(on)(x) 7→ v, (on)(Q) 7→ (k′, l) · q]

(h, [om]) � (h′, [on+1→m] : [o1→n])

(Await I)

nextObject(h, [om]) = on h(on)(Q) = (Await f k′, l) · q
h(h(on)(f)) = Right v h′ = h[(on)(Q) 7→ (k′, l) · q]

(h, [om]) � (h′, [on+1→m] : [o1→n])

(Await II)

nextObject(h, [om]) = on h(on)(Q) = (Await f k′, l) · q
h(h(on)(f)) = Left e h′ = h[(on)(Q) 7→ q · (Await f k′, l)]

(h, [om]) � (h′, [on+1→m] : [o1→n])

(Async)

nextObject(h, [om]) = on h(on)(Q) = (Assign f (Async x m z̄) k′, l) · q
h(count) = l′ h(on)(x) = ox h(ox)(Q) = qx (m(w̄) 7→ S) ∈ D
k′′ = m h(on)(z̄) on Nothing undefined newQadd([om], on, ox) = s

h′ = h[(on)(f) 7→ l′, count 7→ l′ + 1, l′ 7→ Left [ ],
(on)(Q) 7→ (k′, l) · q, (ox)(Q) 7→ qx · (k′′, l′)]

(h, [om]) � (h′, s)

(Sync)

nextObject(h, [om]) = on h(on)(Q) = (Assign x (Sync m z̄) k′, l) · q
(m(w̄) 7→ S) ∈ D k′′ = m h(on)(z̄) on (Just x) k′ h′ = h[(on)(Q) 7→ (k′′, l) · q]

(h, [om]) � (h′, [on+1→m] : [o1→n])

(ReturnA)

nextObject(h, [om]) = on h(on)(Q) = (Return x Nothing , l) · q
newQdel([om], on, q) = s h′ = h[l 7→ Right h(on)(x), (on)(Q) 7→ q]

(h, [om]) � (h′, s)

(ReturnS)

nextObject(h, [om]) = on h(on)(Q) = (Return x (Just z) k′, l) · q
h′ = h[(on)(z) 7→ h(on)(x), (on)(Q) 7→ (k′, l) · q]

(h, [om]) � (h′, [on+1→m] : [o1→n])

Fig. 8: Intermediate semantics.

in Fig. 8, considers configurations (h, [om]) where all the information of the ob-
jects is stored in a unified heap—concretely h(on)(Q) returns the process queue
of object on. The semantics in Fig. 8 presents two main differences w.r.t. that in
Fig. 2 and 3 of Sec. 2. First, the list [om] is used to apply a round-robin policy:
the first unblocked object4 on in [om] is selected using nextObject(h, [om]), the
first statement of the active process of on is executed and then the list is updated
to continue with the object on+1. The other difference is that process queues do
not contain sequences of statements but continuations, as explained in the pre-

4 Object whose active process is not waiting for a future variable in a get statement.



cJ〈C, h〉K = (h′, act),where qJεK = ε
act = [on | (on, Qn) ∈ C,Qn 6= ε] qJ(S, l) ·QK = (sJSK,l) · qJQK
C = {(n1, Q1), . . . , (nm, Qm)} and

h′ = h[(ni)(Q) 7→ qJQiK]

Fig. 9: Translation from source to target configurations.

vious section. To generate these continuation rules (Async) and (Sync) invoke
the translation of the methods m with the adequate parameters. Nevertheless,
the rules of the � semantics correspond with the semantic rules in Sec. 2.

Given a list [om] we use the notation [oi→k] for the sublist [oi, oi+i, . . . , ok],
and the operator (:) for list concatenation. In the rules (Async) and (ReturnA),
where the object list can increase or decrease one object, we use the following
auxiliary functions. newQadd([om], on, oy) inserts the object oy into [om] if it is
new (i.e., it does not appear in [om]), and newQdel([om], on, qn) removes the ob-
ject on from [om] if its process queue qn is empty. In both cases they advance
the list of objects to on+1.

newQadd([om], on, oy) =

{
[on+1→m] : [o1→n] if oy ∈ [om]

[on+1→m] : [o1→n] : [oy] if oy /∈ [om]

newQdel([om], on, qn) =

{
[on+1→m] : [o1→n−1] if qn = ε

[on+1→m] : [o1→n] if qn 6= ε

In order to reason about the different semantics, we define the translation
from runtime configurations 〈C, h〉 of Sec. 2 to concrete Haskell data structures
used in the intermediate � semantics and in the compiled Haskell programs (see
Fig. 9). The set of closure lists C is translated into a list of object references, and
the process queues inside C are included into the heap related to the special term
Q. Although we use the same notation h, we consider that the heap is trans-
lated into the corresponding Haskell tuple (object vector, future vector, counter)
explained in Sec. 3. As usual with heaps, we use the notation h[(on)(Q) 7→ q] to
update the process queue of the object on to q. Finally, natural numbers become
integers, global variables become Strings and Nat⊥ values in the futures become
Either values. To denote the inverse translation from data structures to runtime
configurations we use cJ(h′, act)K−1 = 〈C, h〉—the same for queues qJ·K−1 and
statements sJ·K−1. Note that the translation cJ·Kc is not deterministic because it
generates a list of object references from a set of closures C, so the order of the
objects in the list is not defined. On the other hand, the translation of the heap
in cJ·K and the inverse translation cJ·K−1 are deterministic.

Based on the previous definitions we can state the soundness of the traces,
i.e., every trace of eval steps is a valid trace w.r.t. →. Note that for the sake of
conciseness we unify the statements S and their representation as Haskell terms
res, since there is a straightforward translation between them. We consider the
auxiliary function updL([om], on, l) = [on+1→m] : [o1→n−1] : l to update the list
of object references.

Theorem 1 (Trace soundness). Let (h1, s1) be an initial state and consider a
sequence of n−1 consecutive eval steps defined as: a) oi = nextObject(hi, si), b)



eval oi hi = (resi, li, hi+1), c) si+1 = updL(si, oi, li). Then cJ(h1, s1)K−1 →o1
res1

cJ(h2, s2)K−1c →o2
res2 . . .→

on−1
resn−1

cJ(hn, sn)K−1.

Note that it is not possible to obtain a similar result about trace completeness
since the→-semantics in Fig. 3 selects the next object to execute nondeterminis-
tic (random scheduler), whereas the intermediate �-semantics in Fig. 8 follows a
concrete round-robin scheduling policy. As a final remark notice that the interme-
diate semantics � can be seen as a specification of the eval function. Therefore
it can be used to guide the correctness proof of eval using proof assistance tools
like Isabelle [12] or to generate tests automatically using QuickCheck [6].

4.1 Preservation of Resource Consumption

A strong feature of our translation is that the Haskell-translated program pre-
serves the resource consumption of the original ABS program. As in [1] we use
the notion of cost model to parameterize the type of resource we want to bound.
Cost models are functions from ABS statements to real numbers, i.e.,M : S → R
that define different resource consumption measures. For instance, if the resource
to measure is the number of executed steps, M : S → 1 such that each instruc-
tion has cost one. However, if one wants to measure memory consumption, we
have that M(new) = c, where c refers to the size of an object reference, and
M(instr) = 0 for all remaining instructions. The resource preservation is based
on the notion of trace cost, i.e., the sum of the cost of the statements executed.
Given a concrete cost model M, an object reference o and a program execution
T ≡ A1 →o1

S1
. . .→on−1

Sn−1
An, the cost of the trace C(T , o,M) is defined as:

C(T , o,M) =
∑

S∈T |{o}

M(S)

Notice that, from all the steps in the trace T , it takes into account only those
performed in object o (denoted as T |{o}), so the cost notion is object-sensitive.
Since the trace soundness states that the eval function performs the same steps
as some trace T , the cost preservation is a straightforward corollary:

Corollary 1 (Consumption Preservation). Let (h1, s1) be an initial state
and consider a sequence TE of n− 1 consecutive eval steps defined as: a) oi =
nextObject(hi, si), b) (resi, li, hi+1) = eval oi hi, c) si+1 = updL(si, oi, li).
Then T = cJ(h1, s1)K−1 →o1

res1
cJ(h2, s2)K−1c →o2

res2 . . . →on−1
resn−1

cJ(hn, sn)K−1
such that C(TE , o,M) = C(T , o,M).

As a side effect of the previous result, we know that the upper bounds that
are inferred from the ABS programs (using resource analyzers like [1]) are valid
upper bounds for the Haskell translated code. We denote by UBmain()|o the
upper bound obtained for the analysis of a main method for the computation
performed on object o.

Theorem 2 (Bound preservation). Let P be a program, TE a sequence of
eval steps from an initial state (h1, s1) and UBmain()|o the upper bound obtained
for the program P starting from the main block, restricted to the object o. Then
C(TE , o,M) ≤ UBmain()|o
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Fig. 10: Execution steps vs. time (Intel® CoreTM i7-4790 at 3.60GHz, 16 GB).

5 Experimental Evaluation

In the previous section we proved that the execution of compiled Haskell pro-
grams has the same resource consumption as the original ABS traces wrt. any
concrete cost model M, i.e., both programs execute the same ABS statements
in the same order and in the same objects. However, cost models are defined in
terms of ABS statements so they are unaware of low-level details of the Haskell
runtime environment as β-reductions or garbage collection. Studying the rela-
tion between cost models and some significant low-level details of the Haskell
runtime in a formal way is an interesting line of future work. In this section we
address empirically one particular topic: the Haskell runtime does not introduce
additional overhead, i.e., the execution of one ABS statement requires only a
constant amount of work. In order to evaluate this hypothesis, we have elabo-
rated programs5 with different asymptotic costs and measured the number of
statements executed (steps) and their run-time. The Primality test computes
the primality of a number n: the program creates n objects and checks every
possible divisor of n on each object. The difference is that the low paralellism
version awaits for the result of one divisor before invoking the next check and
the high parallelism version does not. Both programs have a O(n) cost. The

5 The ABS-subset experimental programs and measurements together with the target
language & runtime reside at http://github.com/abstools/abs-haskell-formal.

http://github.com/abstools/abs-haskell-formal


Logarithm computation program computes the integer part n logarithms. It has
cost O(n.log n). Finally Primes in a range computes the prime numbers in the
interval [1..n], thus having a O(n2) cost.

We have tested the programs with n ranging from 500 to 5000, running 20
experiments for every value of n, and measured the time. This is plotted in the
cross line (right margin) in Fig. 10. The plot represents the mode times and the
minimum and maximum times as whiskers. We have also measured the actual
number of steps, represented in the square line (left margin) in Fig. 10. These
two plots show that the execution time and the number of executed steps grows
with a similar rate in all the programs, independently of their asymptotical cost,
thus confirming that the compilation does not incur any overhead.

We have also plotted the resource bounds obtained by the SACO tool [2] for
the different values of n (triangle line, left margin in Fig. 10). SACO can ana-
lyze full ABS programs and thus also the subset considered in this paper, and
allows the selection of the cost model of interest. In this case we have analyzed
the original ABS programs using the cost model that obtains the number of
ABS statements executed. As can be appreciated, the upper bounds are sound
and overapproximate the actual number of executed statements. The difference
between the upper bounds and the actual number of statements executed is ex-
plained for two reasons. First, the SACO tool considers constructor methods,
i.e., methods that are invoked on every new object, so the SACO tool will count
a constant number of extra statements whenever a new object is created. How-
ever, the main source of imprecision are branching points where SACO combines
different fragments of information. A clear example are loops like the one in the
Primes in a range program. The main loop checks if a number i ∈ [1..n] is a
prime number on each iteration, and this check needs the execution of i state-
ments. In this situation SACO considers that every iteration has the maximum
cost (n statements) and generate an upper bound of n2 instead of the more
precise (but asymptotically equivalent) expression 1 + 2 + . . .+ n.

6 Conclusion and Future Work

We have presented a concurrent object-oriented language (a subset of ABS) and
its compilation to Haskell using continuations. The compilation is formalised in
order to establish that the program behaviour and the resource consumption are
preserved by the translation. Compared to the only other formalised ABS back-
end [9] (in Maude), our Haskell translation admits the preservation of resource
consumption, and as a side benefit, makes uses of an overall faster backend.6

In the future we plan to extend our formalisations to accommodate full
ABS, both in terms of the omitted parts of the language as well as the non-
deterministic behaviour of a multi-threaded scheduler, e.g. by broadening our
simulated scheduler to non-determinism, and perhaps (M:N) thread parallelism.
Another consideration is to relate our resource-preservation result to a distributed-
object extension of ABS [4]; specifically, how the resource analysis translates to

6 http://abstools.github.io/abs-bench keeps an up-to-date benchmark of all ABS
backends.

http://abstools.github.io/abs-bench


network transport costs after any network optimizations or protocol limitations.
Finally, we plan to formally relate the ABS cost models used to define the cost
of a trace and some of the low-level runtime details of the Haskell runtime like
β-reductions, garbage collections or main memory usage. Thus, we could express
trace costs and upper bounds in terms closer to the actual running environment.
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