9 research outputs found

    Crop Updates 2000 - Oilseeds

    Get PDF
    This session covers seventeen papers from different authors: Introduction, Paul Carmody, Centre for Cropping Systems CANOLA AGRONOMY 2. Genotype, location and year influence the quality of canola grown across southern Australia, PingSi1, Rodney Mailer2, Nick Galwey1 and David Turner1, 1Plant Sciences, Faculty of Agriculture, The University of Western Australia, 2Agricultural Research Institute, New South Wales Agriculture 3. Development of Pioneer® Canola varieties for Australian market,Kevin Morthorpe, StephenAddenbrooke, Pioneer Hi-Bred Australia Pty Ltd 4. Canola, Erucic Acid, Markets and Agronomic Implications, Peter Nelson, The Grain Pool of Western Australia 5. The control of Capeweed in Clearfield Production System for Canola, Mike Jackson and ScottPaton, Cyanamid Agriculture Pty Ltd 6. Responsiveness of Canola to Soil Potassium Levels: How Low Do We Have To Go? Ross Brennan, Noeleen Edwards, Mike Bolland and Bill Bowden,Agriculture Western Australia 7. Adaption of Indian Mustard (Brassica juncea) in the Mediterranean Environment of South Western Australia, C.P. Gunasekera1, L.D. Martin1, G.H. Walton2 and K.H.M. Siddique2 1Muresk Institute of Agriculture, Curtin University of Technology, Northam, 2Agriculture Western Australia 8. Physiological Aspects of Drought Tolerance in Brassica napus and B.juncea, Sharon R. Niknam and David W. Turner, Plant Sciences, Faculty of Agriculture, The University of Western Australia 9. Cross resistance of chlorsulfuron-resistant wild radish to imidazolinones, Abul Hashem, Harmohinder Dhammu and David Bowran, Agriculture Western Australia 10. Canola Variety and PBR Update 2000, From The Canola Association of Western Australia 11. Development of a canola ideotype for the low rainfall areas of the western Australian wheat belt, Syed H. Zaheer, Nick W. Galwey and David W. Turner, Faculty of Agriculture, The University of Western Australia DISEASE MANAGEMENT 12. Evaluation of fungicides for the management of blackleg in canola, Ravjit Khangura and Martin J. Barbetti, Agriculture Western Australia 13. Impact-IFÒ: Intergral in the control of Blackleg, Peter Carlton, Trials Coordinator, Elders Limited 14. Forecasting aphid and virus risk in canola, Debbie Thackray, Jenny Hawkes and Roger Jones, Agriculture Western Australia and Centre for Legumes in Mediterranean Agriculture 15. Beet western yellow virus in canola: 1999 survey results, wild radish weed reservoir and suppression by insecticide, Roger Jones and Brenda Coutts, Agriculture Western Australia 16. Are canola crops resilient to damage by aphids and diamond back moths? Françoise Berlandier, Agriculture Western Australia ECONOMIC OUTLOOK 17. Outlook for prices and implications for rotations, Ross Kingwell1,2, Michael O’Connell1 and Simone Blennerhasset11Agriculture Western Australia 2University of Western Australi

    Crop Updates 2000 - Oilseeds

    No full text
    This session covers seventeen papers from different authors: Introduction, Paul Carmody, Centre for Cropping Systems CANOLA AGRONOMY 2. Genotype, location and year influence the quality of canola grown across southern Australia, PingSi1, Rodney Mailer2, Nick Galwey1 and David Turner1, 1Plant Sciences, Faculty of Agriculture, The University of Western Australia, 2Agricultural Research Institute, New South Wales Agriculture 3. Development of Pioneer® Canola varieties for Australian market,Kevin Morthorpe, StephenAddenbrooke, Pioneer Hi-Bred Australia Pty Ltd 4. Canola, Erucic Acid, Markets and Agronomic Implications, Peter Nelson, The Grain Pool of Western Australia 5. The control of Capeweed in Clearfield Production System for Canola, Mike Jackson and ScottPaton, Cyanamid Agriculture Pty Ltd 6. Responsiveness of Canola to Soil Potassium Levels: How Low Do We Have To Go? Ross Brennan, Noeleen Edwards, Mike Bolland and Bill Bowden,Agriculture Western Australia 7. Adaption of Indian Mustard (Brassica juncea) in the Mediterranean Environment of South Western Australia, C.P. Gunasekera1, L.D. Martin1, G.H. Walton2 and K.H.M. Siddique2 1Muresk Institute of Agriculture, Curtin University of Technology, Northam, 2Agriculture Western Australia 8. Physiological Aspects of Drought Tolerance in Brassica napus and B.juncea, Sharon R. Niknam and David W. Turner, Plant Sciences, Faculty of Agriculture, The University of Western Australia 9. Cross resistance of chlorsulfuron-resistant wild radish to imidazolinones, Abul Hashem, Harmohinder Dhammu and David Bowran, Agriculture Western Australia 10. Canola Variety and PBR Update 2000, From The Canola Association of Western Australia 11. Development of a canola ideotype for the low rainfall areas of the western Australian wheat belt, Syed H. Zaheer, Nick W. Galwey and David W. Turner, Faculty of Agriculture, The University of Western Australia DISEASE MANAGEMENT 12. Evaluation of fungicides for the management of blackleg in canola, Ravjit Khangura and Martin J. Barbetti, Agriculture Western Australia 13. Impact-IFÒ: Intergral in the control of Blackleg, Peter Carlton, Trials Coordinator, Elders Limited 14. Forecasting aphid and virus risk in canola, Debbie Thackray, Jenny Hawkes and Roger Jones, Agriculture Western Australia and Centre for Legumes in Mediterranean Agriculture 15. Beet western yellow virus in canola: 1999 survey results, wild radish weed reservoir and suppression by insecticide, Roger Jones and Brenda Coutts, Agriculture Western Australia 16. Are canola crops resilient to damage by aphids and diamond back moths? Françoise Berlandier, Agriculture Western Australia ECONOMIC OUTLOOK 17. Outlook for prices and implications for rotations, Ross Kingwell1,2, Michael O’Connell1 and Simone Blennerhasset11Agriculture Western Australia 2University of Western Australi

    Two key cathepsins, TgCPB and TgCPL, are targeted by the vinyl sulfone inhibitor K11777 in <i>in vitro</i> and <i>in vivo</i> models of toxoplasmosis

    No full text
    <div><p>Although toxoplasmosis is one of the most common parasitic infections worldwide, therapeutic options remain limited. Cathepsins, proteases that play key roles in the pathogenesis of toxoplasmosis and many other protozoan infections, are important potential therapeutic targets. Because both TgCPB and TgCPL play a role in <i>T</i>. <i>gondii</i> invasion, we evaluated the efficacy of the potent, irreversible vinyl sulfone inhibitor, K11777 (<i>N-</i>methyl-piperazine-Phe-homoPhe-vinylsulfone-phenyl). The inhibitor’s toxicity and pharmacokinetic profile have been well-studied because of its <i>in vitro</i> and <i>in vivo</i> activity against a number of parasites. We found that it inhibited both TgCPB (EC50 = 114 nM) and TgCPL (EC50 = 71 nM) <i>in vitro</i>. K11777 also inhibited invasion of human fibroblasts by RH tachyzoites by 71% (p = 0.003) and intracellular replication by >99% (p<0.0001). <i>In vivo</i>, a single dose of K11777 led to 100% survival of chicken embryos in an model of acute toxoplasmosis (<i>p</i> = 0.015 Cox regression analysis). Therefore, K11777 shows promise as a novel therapeutic agent in the treatment of toxoplasmosis, and may prove to be a broadly effective anti-parasitic agent.</p></div

    Cysteine proteases in protozoan parasites.

    No full text
    Cysteine proteases (CPs) play key roles in the pathogenesis of protozoan parasites, including cell/tissue penetration, hydrolysis of host or parasite proteins, autophagy, and evasion or modulation of the host immune response, making them attractive chemotherapeutic and vaccine targets. This review highlights current knowledge on clan CA cysteine proteases, the best-characterized group of cysteine proteases, from 7 protozoan organisms causing human diseases with significant impact: Entamoeba histolytica, Leishmania species (sp.), Trypanosoma brucei, T. cruzi, Cryptosporidium sp., Plasmodium sp., and Toxoplasma gondii. Clan CA proteases from three organisms (T. brucei, T. cruzi, and Plasmodium sp.) are well characterized as druggable targets based on in vitro and in vivo models. A number of candidate inhibitors are under development. CPs from these organisms and from other protozoan parasites should be further characterized to improve our understanding of their biological functions and identify novel targets for chemotherapy

    Cysteine proteases in protozoan parasites

    No full text

    LEA Proteins in Salt Stress Tolerance

    No full text
    corecore