345 research outputs found

    Nutrient relations in calcareous grassland under elevated CO2

    Get PDF
    Plant nutrient responses to 4 years of CO2 enrichment were investigated in situ in calcareous grassland. Beginning in year 2, plant aboveground C:N ratios were increased by 9% to 22% at elevated CO2 (P > 0.01), depending on year. Total amounts of N removed in biomass harvests during the first 4 years were not affected by elevated CO2 (19.9 +/- 1.3 and 21.1 +/- 1.3 g N m(-2) at ambient and elevated CO2), indicating that the observed plant biomass increases were solely attained by dilution of nutrients. Total aboveground P and tissue N:P ratios also were not altered by CO2 enrichment (12.5 +/- 2 g N g(-1) P in both treatments). In contrast to non-legumes (<98% of community aboveground biomass), legume C/N was not reduced at elevated CO2 and legume N:P was slightly increased. We attribute the less reduced N concentration in legumes at elevated CO2 to the fact that virtually all legume N originated from symbiotic N-2 fixation (%N-dfa approximate to 90%), and thus legume growth was not limited by soil N. While total plant N was not affected by elevated CO2, microbial N pools increased by +18% under CO2 enrichment (P = 0.04) and plant available soil N decreased. Hence, there was a net increase in the overall biotic N pool, largely due increases in the microbial N pool. In order to assess the effects of legumes for ecosystem CO2 responses and to estimate the degree to which plant growth was P-limited, two greenhouse experiments were conducted, using firstly undisturbed grassland monoliths from the field site, and secondly designed 'microcosm' communities on natural soil. Half the microcosms were planted with legumes and half were planted without. Both monoliths and microcosms were exposed to elevated CO2 and P fertilization in a factored design. After two seasons, plant N pools in both unfertilized monoliths and microcosm communities were unaffected by CO2 enrichment, similar to what was found in the field. However, when P was added total plant N pools increased at elevated CO2. This community-level effect originated almost solely from legume stimulation. The results suggest a complex interaction between atmospheric CO2 concentrations, N and P supply. Overall ecosystem productivity is N-limited, whereas CO2 effects on legume growth and their N2 fixation are limited by P

    Electromechanical Piezoresistive Sensing in Suspended Graphene Membranes

    Full text link
    Monolayer graphene exhibits exceptional electronic and mechanical properties, making it a very promising material for nanoelectromechanical (NEMS) devices. Here, we conclusively demonstrate the piezoresistive effect in graphene in a nano-electromechanical membrane configuration that provides direct electrical readout of pressure to strain transduction. This makes it highly relevant for an important class of nano-electromechanical system (NEMS) transducers. This demonstration is consistent with our simulations and previously reported gauge factors and simulation values. The membrane in our experiment acts as a strain gauge independent of crystallographic orientation and allows for aggressive size scalability. When compared with conventional pressure sensors, the sensors have orders of magnitude higher sensitivity per unit area.Comment: 20 pages, 3 figure

    CSO and CARMA Observations of L1157. I. A Deep Search for Hydroxylamine (NH2_2OH)

    Get PDF
    A deep search for the potential glycine precursor hydroxylamine (NH2_2OH) using the Caltech Submillimeter Observatory (CSO) at λ=1.3\lambda = 1.3 mm and the Combined Array for Research in Millimeter-wave Astronomy (CARMA) at λ=3\lambda = 3 mm is presented toward the molecular outflow L1157, targeting the B1 and B2 shocked regions. We report non-detections of NH2_2OH in both sources. We a perform non-LTE analysis of CH3_3OH observed in our CSO spectra to derive kinetic temperatures and densities in the shocked regions. Using these parameters, we derive upper limit column densities of NH2_2OH of 1.4×1013\leq1.4 \times 10^{13}~cm2^{-2} and 1.5×1013\leq1.5 \times 10^{13}~cm2^{-2} toward the B1 and B2 shocks, respectively, and upper limit relative abundances of NNH2OH/NH21.4×108N_{NH_2OH}/N_{H_2} \leq1.4 \times 10^{-8} and 1.5×108\leq1.5 \times 10^{-8}, respectively.Comment: Accepted in the Astrophysical Journa

    CSO and CARMA Observations of L1157. II. Chemical Complexity in the Shocked Outflow

    Get PDF
    L1157, a molecular dark cloud with an embedded Class 0 protostar possessing a bipolar outflow, is an excellent source for studying shock chemistry, including grain-surface chemistry prior to shocks, and post-shock, gas-phase processing. The L1157-B1 and B2 positions experienced shocks at an estimated ~2000 and 4000 years ago, respectively. Prior to these shock events, temperatures were too low for most complex organic molecules to undergo thermal desorption. Thus, the shocks should have liberated these molecules from the ice grain-surfaces en masse, evidenced by prior observations of SiO and multiple grain mantle species commonly associated with shocks. Grain species, such as OCS, CH3OH, and HNCO, all peak at different positions relative to species that are preferably formed in higher velocity shocks or repeatedly-shocked material, such as SiO and HCN. Here, we present high spatial resolution (~3") maps of CH3OH, HNCO, HCN, and HCO+ in the southern portion of the outflow containing B1 and B2, as observed with CARMA. The HNCO maps are the first interferometric observations of this species in L1157. The maps show distinct differences in the chemistry within the various shocked regions in L1157B. This is further supported through constraints of the molecular abundances using the non-LTE code RADEX (Van der Tak et al. 2007). We find the east/west chemical differentiation in C2 may be explained by the contrast of the shock's interaction with either cold, pristine material or warm, previously-shocked gas, as seen in enhanced HCN abundances. In addition, the enhancement of the HNCO abundance toward the the older shock, B2, suggests the importance of high-temperature O-chemistry in shocked regions.Comment: Accepted for publication in the Astrophysical Journa

    Clinical value of a combined multi-phase contrast enhanced DOPA-PET/CT in neuroendocrine tumours with emphasis on the diagnostic CT component

    Get PDF
    Objective: To assess the clinical value of multi-phase, contrast-enhanced DOPA-PET/CT with emphasis on the diagnostic CT component in patients with neuroendocrine tumours (NET). Methods: Sixty-five patients with NET underwent DOPA-cePET/CT. The DOPA-PET, multi-phase CT and combined DOPA cePET/CT data were evaluated and diagnostic accuracies compared. The value of ceCT in DOPA cePET/CT concerning lesion detection and therapeutic impact was evaluated. Sensitivities, specificities and accuracies were calculated. Histopathology and clinical follow-up served as the standard of reference. Differences were tested for statistical significance by McNemar's test. Results: In 40 patients metastatic and/or primary tumour lesions were detected. Lesion-based analysis for the DOPA-PET showed sensitivity, specificity and accuracy of 66%, 100% and 67%, for the ceCT data 85%, 71% and 85%, and for the combined DOPA cePET/CT data 97%, 71% and 96%. DOPA cePET/CT was significantly more accurate compared with dual-phase CT (p < 0.05) and PET alone (p < 0.05). Additional lesion detection was based on ceCT in 12 patients; three patients underwent significant therapeutic changes based on the ceCT findings. Conclusion: DOPA cePET/CT was significantly more accurate than DOPA-PET alone and ceCT alone. The CT component itself had a diagnostic impact in a small percentage but contributed to the therapeutic strategies in selected patient

    Clinical and histologic evaluation of heterotopic mucosa transpositioning at teeth and dental implants.

    Get PDF
    AIM To investigate the healing after heterotopic mucosa transpositioning at dental implants and teeth. MATERIALS AND METHODS One hemimandible per dog (n = 4) was allocated to receive 3 implants (test), whereby 3 premolars on the contralateral side served as controls. After osseointegration, a Z-plasty was performed on the buccal aspect of the test and control sites to heterotopically move the zone of keratinized tissue (KT) into a region with non-keratinized tissue (nKT) and vice versa. Clinical measurements were performed before (T0) and at 12 weeks following heterotopic transposition (T1). Thereafter, specimens were processed for histological analysis. RESULTS Clinical measurements revealed that at T1, a band of KT was reestablished at teeth (mean: 2.944 ± 1.866 mm), whereas at implants, the transpositioned nKT resulted in a mucosa without any signs of keratinization (mean: 0 mm; p < .0001). At implant sites, the probing attachment level loss was more pronounced compared to tooth sites (-1.667 ± 1.195 mm and -1.028 ± 0.878 mm, respectively; p = .0076). Histologically, the transpositioned nKT, was accompanied by the formation of KT at the tooth but not at implant sites. The supracrestal soft tissues were statistically significantly higher at tooth compared to implant sites (2.978 ± 0.483 mm and 2.497 ± 0.455 mm, p = .0083). The transpositioned KT remained mostly unaltered in its morphological characteristics. CONCLUSIONS The findings of this study indicate that: (a) transpositioned KT may retain its morphological characteristics; and (b) transpositioned nKM was accompanied by the formation of KT at the tooth but not at implant sites

    Spontaneous regeneration of keratinized tissue at implants and teeth.

    Get PDF
    AIM To investigate the spontaneous regeneration of the implanto-mucosal and dento-gingival unit after complete removal of keratinized tissue (KT). MATERIALS AND METHODS One hemi-mandible per dog (n = 4) was allocated to receive three dental implants (test sites, premolar region), whereas three premolars on the contralateral side were controls. After osseointegration, the entire KT (buccal + lingual) was surgically excised on all test and control sites, leaving the bone exposed. Clinical measurements were performed before excision (T0 ) and after 12 weeks (T1 ). Following healing, the animals were euthanized, and the specimens were histologically processed. Descriptive statistical analyses were performed. RESULTS Clinical measurements revealed that at T1 , on all teeth, a band of KT was spontaneously regenerated (mean width: 2.60 ± 0.66 mm), whereas on implants, KT was detected only occasionally at mesial or distal but not at buccal sites (mean total: 0.35 ± 0.53 mm; p < .0001). Histologically, spontaneous regeneration of the dento-gingival unit was evident, displaying masticatory mucosa. At the implant sites, on the other hand, the implanto-mucosal unit was characterized by a non-keratinized epithelium and elastic fibres, indicating the characteristics encountered in alveolar mucosa. CONCLUSION After excision of KT at implant sites, the spontaneous regeneration of the soft tissue is characterized by a non-keratinized epithelium typical for alveolar mucosa, while at tooth sites the spontaneous regeneration was characterized by soft tissue resembling gingiva

    Emulating the impact of additional proton–proton interactions in the ATLAS simulation by presampling sets of inelastic Monte Carlo events

    Get PDF
    The accurate simulation of additional interactions at the ATLAS experiment for the analysis of proton–proton collisions delivered by the Large Hadron Collider presents a significant challenge to the computing resources. During the LHC Run 2 (2015–2018), there were up to 70 inelastic interactions per bunch crossing, which need to be accounted for in Monte Carlo (MC) production. In this document, a new method to account for these additional interactions in the simulation chain is described. Instead of sampling the inelastic interactions and adding their energy deposits to a hard-scatter interaction one-by-one, the inelastic interactions are presampled, independent of the hard scatter, and stored as combined events. Consequently, for each hard-scatter interaction, only one such presampled event needs to be added as part of the simulation chain. For the Run 2 simulation chain, with an average of 35 interactions per bunch crossing, this new method provides a substantial reduction in MC production CPU needs of around 20%, while reproducing the properties of the reconstructed quantities relevant for physics analyses with good accuracy

    Perspetiva europeia de melhoramento e propagação de macieira em agricultura biológica no âmbito do projeto LIVESEED

    Get PDF
    A maçã é um dos frutos de maior destaque na fruticultura europeia. No entanto, a sua produção em Agricultura Biológica (AB) é um desafio constante, dada a problemática associada à proteção das culturas, num quadro de forte limitação à aplicação de produtos fitossanitários. Deste modo, torna-se necessária a produção de material vegetal melhor adaptado às condições edafoclimáticas e ao modo de produção biológica. O objetivo do LIVESEED é melhorar o desempenho e a sustentabilidade em AB, impulsionando os esforços de produção de diásporos e de melhoramento de plantas em modo de produção biológica

    Temperature and moisture are minor drivers of regional-scale soil organic carbon dynamics

    Get PDF
    Storing large amounts of organic carbon, soils are a key but uncertain component of the global carbon cycle, and accordingly, of Earth System Models (ESMs). Soil organic carbon (SOC) dynamics are regulated by a complex interplay of drivers. Climate, generally represented by temperature and moisture, is regarded as one of the fundamental controls. Here, we use 54 forest sites in Switzerland, systematically selected to span near-independent gradients in temperature and moisture, to disentangle the effects of climate, soil properties, and landform on SOC dynamics. We estimated two SOC turnover times, based on bulk soil 14C measurements (τ14C) and on a 6-month laboratory soil incubation (τi). In addition, upon incubation, we measured the 14C signature of the CO2 evolved and quantified the cumulated production of dissolved organic carbon (DOC). Our results demonstrate that τi and τ14C capture the dynamics of contrasting fractions of the SOC continuum. The 14C-based τ14C primarily reflects the dynamics of an older, stabilised pool, whereas the incubation-based τi mainly captures fresh readily available SOC. Mean site temperature did not raise as a critical driver of SOC dynamics, and site moisture was only significant for τi. However, soil pH emerged as a key control of both turnover times. The production of DOC was independent of τi and not driven by climate, but primarily by the content of clay and, secondarily by the slope of the site. At the regional scale, soil physicochemical properties and landform appear to override the effect of climate on SOC dynamics
    corecore