223 research outputs found

    Ground Wheat Grain for Midlactation Cows: Challenging a Common Wisdom

    Get PDF
    The objective was to determine the effects of ground wheat grain (GW) inclusion rate, grinding extent (GE), and their interaction on lactating cow performance. Eight midlactation cows in 3 × 4 m individual boxes were used in a 4 × 4 replicated Latin square design study with 4 21 d periods. GW was fed at either 10% or 20% of diet dry matter (DM), as either finer or coarser particles. DM intake increased and net energy for lactation (NEL) intake tended to increase when GW was fed at 10% instead of 20% of diet DM. Milk energy yield, milk solids content and yield, and urine pH were unaffected. Fecal pH tended to increase at 20% versus 10% GW. Total tract apparent NDF, but not DM, digestibility tended to be greater for coarsely than finely GW and tended to be greater at 10% versus 20% GW. GW at 10% versus 20% of diet DM decreased blood BHBA and increased blood concentrations of total proteins and albumin. Data provide novel evidence that both finely and coarsely ground WG can be safely fed up to 20% midlactation cows. Commercial accessibility and cost will determine feeding preference of wheat grain to dairy cows

    Crashworthiness design and optimisation of windowed tubes under axial impact loading

    Get PDF
    © 2019 Elsevier Ltd Thin-walled structures are frequently used as energy absorbers in the automotive, railway and aviation industries. This paper addresses the crashworthiness performance of thin-walled windowed tubes under dynamic impact loading. Different shapes of cut-outs were introduced to thin-walled tubes with different cross-sectional shapes to create windowed tubes. Explicit finite element code, LS-DYNA, was used to simulate the crushing behaviour of the windowed tubes under axial impact loading. The Finite Element (FE)model was validated by conducting experimental tests and showing that the numerical and experimental responses are comparable. The crashworthiness responses of the different windowed tubes were compared and the best performing tube was identified using a multi-criteria decision-making method known as Technique of Order Preference by Similarity to Ideal Solution (TOPSIS). It was found that a circular tube with a square window shape outperforms all other sections and exhibits the best energy absorption characteristics. Subsequently, a multi-objective optimisation analysis was performed to find the optimal configuration of the best tube. Response Surface Methodology (RSM)was used to develop models for the energy absorption responses of the tube. The design variables were selected to describe size, number, and distributions of the windows, while specific energy absorption (SEA)and peak crush force (PCF)were set as design responses. Parametric analysis was conducted to understand the effects of the design variables on the crashworthiness behaviour and the optimal configuration was identified.Accepted versio

    Crashworthiness analysis of bio-inspired thin-walled tubes based on Morpho wings microstructures

    Get PDF
    This is an accepted manuscript of an article published by Taylor & Francis in Mechanics Based Design of Structures and Machines on 23/09/2020, available online: https://doi.org/10.1080/15397734.2020.1822184 The accepted version of the publication may differ from the final published version.© 2020 Taylor & Francis Group, LLC. Innovative thin-walled structures, bio-inspired by the microstructure of Morpho wings, were proposed as energy absorbing devices in this study. A finite element model, experimentally validated, was used to investigate the crush responses and deformation modes of 18 multi-layered tubes with different geometrical configurations. The crashworthiness parameters were determined for the bio-inspired structures and compared with the traditional structures. Furthermore, a multi-criteria decision-making method was employed in order to identify the best crashworthiness design. It was found that the multi-layered bio-inspired tube with square cross sections and reinforcement walls outperformed all other designs and exhibited the best energy absorption capability.Published versio

    The effects of different levels of sodium caseinate on rumen fermentation pattern, digestibility and microbial protein synthesis of Holstein dairy cows

    Get PDF
    This study was conducted to investigate the effects of different levels of peptide supplementation on rumen fermentation pattern, digestibility and microbial protein synthesis. Three rumen-cannulated Holstein dairy cows were used in a 3 × 3 Latin square experiment within 21 days period. The ruminal infusion of sodium caseinate (CN) was 0 (control), 50 and 100 g/d. Dry matter intake, milk yield and composition , total tract apparent digestibility of nutrient, rumen parameters and purine derivatives inurine of cows were measured. Results showed that dairy cows received sodium caseinate, had significantly increased microbial protein synthesis, milk fat yield, acetate and branched chain fatty acids concentrations in rumen fluid and fiber digestibility compared with the control treatment (P <0.05). CN significantly affected the concentrations of rumen ammonia nitrogen (NH3-N), rumen peptide nitrogen (Pep-N) and the ratio of rumen ammonia nitrogen/ rumen peptide nitrogen (P < 0.05) and consequently blood urea nitrogen, milk urea nitrogen and urinary urea nitrogen concentrations. However digestibility of dry matter and crude protein did not differ among treatments. In conclusion, if the optimum level of NH3-N/Pep-N was the best compromise among the need for rumen fermentation, microbial protein synthesis and nitrogen excretion through urine in animal, the recommended level from this study would be 0.86 in rumen fluid

    Evaluation of crushing and energy absorption characteristics of bio-inspired nested structures

    Get PDF
    Mimicking anatomical structures like bone can aid in the development of energy absorbing structures that can achieve desirable properties. Accordingly, this study presents the analysis of tubular nested designs inspired by Haversian bone architecture. Based on this design philosophy, a total of 18 nested tube designs with various geometrical configurations were developed. Within each design, the effect of reinforcement walls on the crashworthiness performance is also analysed. A finite element model, validated using quasi-static experimental tests, was used to study the crashworthiness performance and progressive deformation of the nested system. Based on the results, a multi-criteria decision-making method known as Technique of Order Preference by Similarity to Ideal Solution (TOPSIS) was employed to determine the most suitable cross-section that features high energy absorption and low impact force. Consequently, the study identified a nested tube configuration that exhibits superior crashworthiness and high energy absorbing characteristics. The bio-inspired design methodology presented in this study allows the exploitation of variable nested geometries for the development of high-efficiency energy absorbing structures.Accepted versio

    Study the different levels of protein and energy on production of Indian white shrimp

    Get PDF
    A factorial experiment containing various protein and energy levels of diets was conducted for 60 days to determine the response of Indian White Shrimp, Penaeus indicus, juvenile whit mean weight of 3.22±0.04 g. Nine diets containing three levels of protein (35, 40 and 45%) and three levels of energy (350, 380 and 410 kcal/100g) were formulated and prepared in this trial. So this study was conducted with 9 treatments and triplicate random groups of 20 shrimps per each 300-liter tanks. Each tank was filled with 200 lit, water and exchanged 50 percent every day. The shrimp were fed their respective diets as a situation with the feed divided into three parts of feeding at 08:00, 14:00 and 20:00 h daily. In this study, D8 (40:410) diet with P/E ratio of 95.7mgp/kcal represent the notable performances for P. indicus. Furthermore, the present study showed that at constant protein levels, growth performances improved with increase in energy levels. The results of study also indicated at constant energy levels, weight gain, SGR, FCR and yield improved with increase in P/E ratio, but PER and NPU demonstrated a negative relationship between protein levels of 35 to 45. The proximate analysis and amino acid profiles of shrimp carcass did not show significant difference among the different diets

    A possible pathogenic role of Syndecan-1 in the pathogenesis of coronavirus disease 2019 (COVID-19)

    Get PDF
    A cell-surface heparan proteoglycan called Syndecan-1 (SDC-1) has multiple roles in healthy and pathogenic conditions, including respiratory viral infection. In this study, we explore the dynamic alternation in the levels of SDC-1 in cases with COVID-19. A total of 120 cases definitely diagnosed with COVID-19 were admitted to the Firoozgar Hospital, Tehran, Iran, from December 1, 2020, to January 29, 2021, and included in our study. Also, 58 healthy subjects (HS) were chosen as the control group. Patients were classified into two groups: 1) ICU patients and (63 cases) 2) non-ICU patients (57 cases). The dynamic changes of serum SCD-1, CRP, IL-6, IL-10, IL-18, and Vit D levels a well as the disease activity were investigated in three-time points (T1-T3). Our results indicated that the COVID-19 patients had significantly increased SCD-1, CRP, IL-6, IL-10, and IL-18 levels than in HS, while the Vit D levels in COVID-19 patients were significantly lower than HS. Further analysis demonstrated that the SCD-1, CRP, IL-6, IL-10, and IL-18 levels in ICU patients were significantly higher than in non-ICU patients. Tracking dynamic changes in the above markers indicated that on the day of admission, the SCD-1, CRP, IL-6, IL-10, and IL-18 levels were gradually increased on day 5 (T2) and then gradually decreased on day 10 (T3). ROC curve analysis suggests that markers mentioned above, SDC-1, IL-6, and IL-18 are valuable indicators in evaluating the activity of COVID-19. All in all, it seems that the serum SDC-1 levels alone or combined with other markers might be a good candidate for disease activity monitoring. © 2021 Elsevier B.V

    Coronavirus, its neurologic manifestations, and complications

    Get PDF
    Context: We are going to face an epidemic of severe acute respiratory syndrome coronavirus (SARS-CoV-2) virus in our country. The main manifestation of this viral infection is respiratory and cardiovascular; however, up-to-date knowledge of its probable neurologic complications is highly needed. Evidence Acquisition: To provide up-to-date information on neurologic manifestation on coronaviruses, we concisely reviewed the neurologic manifestations and their complications. Using the keywords, coronavirus, corona, human coronaviruses (HCoVs), SARS, Middle East respiratory syndrome-related (MERS), coronavirus disease 2019 (COVID-19), manifestations, complications, and neurologic, all the relevant articles were retrieved from PubMed, reviewed, and critically analyzed. Results: Although the main clinical manifestation of human coronaviruses is respiratory involvement and the main cause of death is acute respiratory failure, extra respiratory manifestations such as neurologic findings have been reported. Fortunately, the neurologic manifestations in COVID-19 have not been reported yet. Conclusions: We need well-designed studies to monitor neurologic manifestations of COVID-19 in adults and children. © 2020, Author(s)

    BCNU for recurrent glioblastoma multiforme: efficacy, toxicity and prognostic factors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prognosis for patients with recurrent glioblastoma is still poor with a median survival between 3 and 6 months. Reports about the application of carmustine (BCNU), one of the standard chemotherapeutic drugs in the treatment of newly diagnosed glioblastoma, in the recurrent situation are rare.</p> <p>Methods</p> <p>We performed a retrospective analysis of 35 patients with recurrent or progressive glioblastoma treated with 80 mg/m<sup>2 </sup>BCNU on days 1 on 3 intravenously at our department for efficacy, toxicity and prognostic factors. Progression free survival and overall survival were estimated by the Kaplan-Meier method. The influence of age, Karnofsky performance status (KPS), tumor burden, pretreatment with temozolomide (TMZ), type of surgery for initial diagnosis and number of previous relapses on outcome was analyzed in a proportional hazards regression model.</p> <p>Results</p> <p>The median age of the group was 53 years, median KPS was 70. Median progression free survival was 11 weeks (95% confidence interval [CI]: 8-15), median overall survival 22 weeks (95% CI: 18-27). The rate of adverse events, especially hematological toxicity, is relatively high, and in 3 patients treatment had to be terminated due to adverse events (one pulmonary embolism, one pulmonary fibrosis, and one severe bone marrow suppression). No influence of age, KPS, tumor burden, pre-treatment with TMZ and number of previous relapses on outcome could be demonstrated, while gross total resection prior to recurrence showed a borderline statistically significant negative impact on PFS and OS. These data compare well with historical survival figures. However prospective randomized studies are needed to evaluate BCNU efficacy against newer drugs like bevacizumab or the intensified temozolomide regime (one week on/one week off).</p> <p>Conclusion</p> <p>In summary, BCNU treatment appears to be a valuable therapeutic option for recurrent glioblastomas, where no other validated radio- and/or chemotherapy are available.</p
    corecore