58 research outputs found

    Low Arginine Plasma Levels do not Aggravate Renal Blood Flow after Experimental Renal Ischaemia/reperfusion

    Get PDF
    AbstractBackground: ischaemic renal dysfunction is present in many clinical settings, including cardiovascular surgery. Renal hypoperfusion seems to be the most important pathophysiologic mechanism. Arginine plasma levels are rate limiting for NO synthesis, and low arginine plasma levels are seen after major vascular surgery. Objective: to establish the effects of low arginine plasma levels on renal blood flow after renal ischaemia/reperfusion. Design: Wistar rats were used in this unilateral renal ischaemia/reperfusion model. After 70 min of ischaemia, the kidney was reperfused for 150 min. Arginase infusion was used to lower arginine plasma levels. Blood flow measurement was performed at the end of the experiment using radiolabelled microspheres. Additional experiments were performed for histopathology. Results: arginase efficiently decreased arginine plasma levels to about 50% of normal. There was a lower blood flow in the ischaemic kidney than the contralateral (non-ischaemic) kidney. Lowering arginine plasma levels did not reduce renal blood flow in the ischaemic kidney. Renal histopathology was not influenced by lowered arginine plasma levels. Conclusions: lowering arginine plasma levels did not affect blood flow or histology following renal ischaemia and reperfusion

    Altered left atrial 4D flow characteristics in patients with paroxysmal atrial fibrillation in the absence of apparent remodeling

    Get PDF
    The pathophysiology behind thrombus formation in paroxysmal atrial fibrillation (AF) patients is very complex. This can be due to left atrial (LA) flow changes, remodeling, or both. We investigated differences for cardiovascular magnetic resonance (CMR)-derived LA 4D flow and remodeling characteristics between paroxysmal AF patients and patients without cardiac disease. In this proof-of-concept study, the 4D flow data were acquired in 10 patients with paroxysmal AF (age=61 +/- 8 years) and 5 age/gender matched controls (age=56 +/- 1 years) during sinus rhythm. The following LA and LA appendage flow parameters were obtained: flow velocity (mean, peak), stasis defined as the relative volume with velocities<10 cm/s, and kinetic energy (KE). Furthermore, LA global strain values were derived from b-SSFP cine images using dedicated CMR feature-tracking software. Even in sinus rhythm, LA mean and peak flow velocities over the entire cardiac cycle were significantly lower in paroxysmal AF patients compared to controls [(13.12.4 cm/s vs. 16.7 +/- 2.1 cm/s, p=0.01) and (19.3 +/- 4.7 cm/s vs. 26.8 +/- 5.5 cm/s, p=0.02), respectively]. Moreover, paroxysmal AF patients expressed more stasis of blood than controls both in the LA (43.2 +/- 10.8% vs. 27.8 +/- 7.9%, p=0.01) and in the LA appendage (73.3 +/- 5.7% vs. 52.8 +/- 16.2%, p=0.04). With respect to energetics, paroxysmal AF patients demonstrated lower mean and peak KE values (indexed to maximum LA volume) than controls. No significant differences were observed for LA volume, function, and strain parameters between the groups. Global LA flow dynamics in paroxysmal AF patients appear to be impaired including mean/peak flow velocity, stasis fraction, and KE, partly independent of LA remodeling. This pathophysiological flow pattern may be of clinical value to explain the increased incidence of thromboembolic events in paroxysmal AF patients, in the absence of actual AF or LA remodeling.Cardiovascular Aspects of Radiolog

    Design of the ExCersion-VCI study: The effect of aerobic exercise on cerebral perfusion in patients with vascular cognitive impairment

    Get PDF
    There is evidence for a beneficial effect of aerobic exercise on cognition, but underlying mechanisms are unclear. In this study, we test the hypothesis that aerobic exercise increases cerebral blood flow (CBF) in patients with vascular cognitive impairment (VCI). This study is a multicenter single-blind randomized controlled trial among 80 patients with VCI. Most important inclusion criteria are a diagnosis of VCI with Mini-Mental State Examination ≥22 and Clinical Dementia Rating ≤0.5. Participants are randomized into an aerobic exercise group or a control group. The aerobic exercise program aims to improve cardiorespiratory fitness and takes 14 weeks, with a frequency of three times a week. Participants are provided with a bicycle ergometer at home. The control group receives two information meetings. Primary outcome measure is change in CBF. We expect this study to provide insight into the potential mechanism by which aerobic exercise improves hemodynamic status

    Left ventricular thrombus formation in myocardial infarction is associated with altered left ventricular blood flow energetics.

    Get PDF
    Aims: The main aim of this study was to characterize changes in the left ventricular (LV) blood flow kinetic energy (KE) using four-dimensional (4D) flow cardiovascular magnetic resonance imaging (CMR) in patients with myocardial infarction (MI) with/without LV thrombus (LVT). Methods and results: This is a prospective cohort study of 108 subjects [controls = 40, MI patients without LVT (LVT- = 36), and MI patients with LVT (LVT+ = 32)]. All underwent CMR including whole-heart 4D flow. LV blood flow KE wall calculated using the formula: KE=12 ρblood . Vvoxel . v2, where ρ = density, V = volume, v = velocity, and was indexed to LV end-diastolic volume. Patient with MI had significantly lower LV KE components than controls (P  0.05). The relative drop in A-wave KE from mid-ventricle to apex and the proportion of in-plane KE were higher in patients with LVT+ compared with LVT- (87 ± 9% vs. 78 ± 14%, P = 0.02; 40 ± 5% vs. 36 ± 7%, P = 0.04, respectively). The time difference of peak E-wave KE demonstrated a significant rise between the two groups (LVT-: 38 ± 38 ms vs. LVT+: 62 ± 56 ms, P = 0.04). In logistic-regression, the relative drop in A-wave KE (beta = 11.5, P = 0.002) demonstrated the strongest association with LVT. Conclusion: Patients with MI have reduced global LV flow KE. Additionally, MI patients with LVT have significantly reduced and delayed wash-in of the LV. The relative drop of distal intra-ventricular A-wave KE, which represents the distal late-diastolic wash-in of the LV, is most strongly associated with the presence of LVT

    Recovery and prognostic value of myocardial strain in ST-segment elevation myocardial infarction patients with a concurrent chronic total occlusion

    Get PDF
    Objectives: Global left ventricular (LV) function is routinely used to assess cardiac function; however, myocardial strain is able to identify more subtle dysfunction. We aimed to determine the recovery and prognostic value of featuring tracking (FT) cardiovascular magnetic resonance (CMR) strain in ST-segment elevation myocardial infarction (STEMI) patients with a concurrent chronic total occlusion (CTO). Methods: In the randomized EXPLORE trial, there was no significant difference in global LV functio

    The asymmetrical dimethylarginine (ADMA)-multiple organ failure hypothesis.

    No full text
    Development of multiple organ failure is the most complex problem in critically ill patients, and is associated with a high mortality. Asymmetrical dimethylarginine (ADMA) is an endogenously produced inhibitor of nitric oxide synthase, of which the clinical importance is currently being revealed. In Nijveldt et al. (The liver is an important organ in the metabolism of asymmetrical dimethylargenine (ADMA) Clin Nutr 2003; 22: 17-22) we showed that plasma ADMA concentration is elevated in critically ill patients and significantly related to hepatic function. Moreover, plasma ADMA concentration emerged as a strong and independent risk factor for ICU mortality in these patients. Here, we hypothesize that accumulation of ADMA is a causative factor in the development of multiple organ failure by interfering with important physiological functions of nitric oxide production

    Role of the human erythrocyte in generation and storage of asymmetric dimethylarginine

    No full text
    Davids M, van Hell AJ, Visser M, Nijveldt RJ, van Leeuwen PAM, Teerlink T. Role of the human erythrocyte in generation and storage of asymmetric dimethylarginine. Am J Physiol Heart Circ Physiol 302: H1762-H1770, 2012. First published February 24, 2012; doi: 10.1152/ajpheart.01205.2011.-Proteolytic activity in whole blood may lead to release of the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA). We investigated the role of the human erythrocyte in storage and generation of ADMA in healthy controls (n = 36) and critically ill patients (n = 38). Both free and total (sum of free and protein-incorporated) ADMA were measured. Upon incubation of intact erythrocytes with extracellular ADMA (0 to 40 mu mol/l), equilibrium between intra-and extracellular ADMA was reached within 3 h. Compared with controls, patients had significantly higher basal concentrations of ADMA in plasma (0.88 +/- 0.75 vs. 0.41 +/- 0.07 mu mol/l) and erythrocytes (1.28 +/- 0.55 vs. 0.57 +/- 0.14 mu mol/l). Intracellular and plasma ADMA were significantly correlated in the patient group only (r = 0.834). Upon lysis, followed by incubation at 37 C for 2 h, free ADMA increased sevenfold (to 8.60 +/- 3.61 mu mol/l in patients and 3.90 +/- 0.78 mu mol/l in controls). In lysates of controls, free ADMA increased further to 9.85 +/- 1.35 mu mol/l after 18 h. Total ADMA was 15.43 +/- 2.44 mu mol/l and did not change during incubation. The increase of free ADMA during incubation corresponded to substantial release of ADMA from the erythrocytic protein-incorporated pool (21.9 +/- 4.6% at 2 h and 60.8 +/- 7.6% at 18 h). ADMA was released from proteins other than hemoglobin, which only occurred after complete lysis and was blocked by combined inhibition of proteasomal and protease activity. Neither intact nor lysed erythrocytes mediated degradation of free ADMA. We conclude that intact erythrocytes play an important role in storage of ADMA, whereas upon erythrocyte lysis large amounts of free ADMA are generated by proteolysis of methylated proteins, which may affect plasma levels in hemolysis-associated disease
    corecore