37 research outputs found

    Fatty acid status in infancy is associated with the risk of type 1 diabetes-associated autoimmunity

    Get PDF
    Aims/hypothesis We investigated the association of early serum fatty acid composition with the risk of type 1 diabetes-associated autoimmunity. Our hypothesis was that fatty acid status during infancy is related to type 1 diabetes-associated autoimmunity and that long-chain n-3 fatty acids, in particular, are associated with decreased risk. Methods We performed a nested case-control analysis within the Finnish Type 1 Diabetes Prediction and Prevention Study birth cohort, carrying HLA-conferred susceptibility to type 1 diabetes (n = 7782). Serum total fatty acid composition was analysed by gas chromatography in 240 infants with islet autoimmunity and 480 control infants at the age of 3 and 6 months. Islet autoimmunity was defined as repeated positivity for islet cell autoantibodies in combination with at least one of three selected autoantibodies. In addition, a subset of 43 infants with primary insulin autoimmunity (i.e. those with insulin autoantibodies as the first autoantibody with no concomitant other autoantibodies) and a control group (n = 86) were analysed. A third endpoint was primary GAD autoimmunity defined as GAD autoantibody appearing as the first antibody without other concomitant autoantibodies (22 infants with GAD autoimmunity; 42 infants in control group). Conditional logistic regression was applied, considering multiple comparisons by false discovery rate <0.05. Results Serum fatty acid composition differed between breastfed and non-breastfed infants, reflecting differences in the fatty acid composition of the milk. Fatty acids were associated with islet autoimmunity (higher serum pentadecanoic, palmitic, palmitoleic and docosahexaenoic acids decreased risk; higher arachidonic: docosahexaenoic and n-6: n-3 acid ratios increased risk). Furthermore, fatty acids were associated with primary insulin autoimmunity, these associations being stronger (higher palmitoleic acid, cis-vaccenic, arachidonic, docosapentaenoic and docosahexaenoic acids decreased risk; higher a-linoleic acid and arachidonic: docosahexaenoic and n-6: n-3 acid ratios increased risk). Moreover, the quantity of breast milk consumed per day was inversely associated with primary insulin autoimmunity, while the quantity of cow's milk consumed per day was directly associated. Conclusions/interpretation Fatty acid status may play a role in the development of type 1 diabetes-associated autoimmunity. Fish-derived fatty acids may be protective, particularly during infancy. Furthermore, fatty acids consumed during breastfeeding may provide protection against type 1 diabetes-associated autoimmunity. Further studies are warranted to clarify the independent role of fatty acids in the development of type 1 diabetes.Peer reviewe

    Maternal Vitamin C and Iron Intake during Pregnancy and the Risk of Islet Autoimmunity and Type 1 Diabetes in Children : A Birth Cohort Study

    Get PDF
    Our aim was to study the associations between maternal vitamin C and iron intake during pregnancy and the offspring's risk of developing islet autoimmunity and type 1 diabetes. The study was a part of the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) prospective birth cohort including children genetically at risk of type 1 diabetes born between 1997-2004. The diets of 4879 mothers in late pregnancy were assessed with a validated food frequency questionnaire. The outcomes were islet autoimmunity and type 1 diabetes. Cox proportional hazards regression analysis adjusted for energy, family history of diabetes, human leukocyte antigen (HLA) genotype and sex was used for statistical analyses. Total intake of vitamin C or iron from food and supplements was not associated with the risk of islet autoimmunity (vitamin C: HR 0.91: 95% CI (0.80, 1.03), iron: 0.98 (0.87, 1.10)) or type 1 diabetes (vitamin C: 1.01 (0.87, 1.17), iron: 0.92 (0.78, 1.08)), neither was the use of vitamin C or iron supplements associated with the outcomes. In conclusion, no association was found between maternal vitamin C or iron intake during pregnancy and the risk of islet autoimmunity or type 1 diabetes in the offspring.Peer reviewe

    Maternal dietary folate, folic acid and vitamin D intakes during pregnancy and lactation and the risk of cows' milk allergy in the offspring

    Get PDF
    Maternal nutrient intake during pregnancy and lactation potentially influences the development of allergic diseases. Cows' milk allergy (CMA) is often the first manifestation of atopic diseases, but the impact of early nutritional influences on CMA has not been explored. The associations between maternal intakes of folate, folic acid and vitamin D during pregnancy and lactation were addressed in a prospective, population-based birth cohort within the Finnish Type 1 Diabetes Prediction and Prevention Study. Mothers of 4921 children during pregnancy and 2940 children during lactation provided information on maternal dietary intake during the 8th month of pregnancy and the 3rd month of lactation using a detailed, validated FFQ. Information on diagnosed CMA in the offspring was obtained from a medical registry as well as queried from the parents. The Finnish food composition database was used to calculate nutrient intake. Logistic regression was applied for statistical analyses. Folate intake and folic acid and vitamin D supplement use were associated with an increased risk of CMA in the offspring, whereas vitamin D intake from foods during pregnancy was associated with a decreased risk of CMA. Thus, maternal nutrient intake during pregnancy and lactation may affect the development of CMA in offspring. Supplementation with folic acid may not be beneficial in terms of CMA development, especially in children of allergic mothers. The association between dietary supplement use and CMA risk can at least partly be explained by increased health-seeking behaviour among more educated mothers who also use more dietary supplements.Peer reviewe
    corecore