12 research outputs found
An integrated analysis of miRNA and gene copy numbers in xenografts of Ewing's sarcoma
<p>Abstract</p> <p>Background</p> <p>Xenografts have been shown to provide a suitable source of tumor tissue for molecular analysis in the absence of primary tumor material. We utilized ES xenograft series for integrated microarray analyses to identify novel biomarkers.</p> <p>Method</p> <p>Microarray technology (array comparative genomic hybridization (aCGH) and micro RNA arrays) was used to screen and identify copy number changes and differentially expressed miRNAs of 34 and 14 passages, respectively. Incubated cells used for xenografting (Passage 0) were considered to represent the primary tumor. Four important differentially expressed miRNAs (miR-31, miR-31*, miR-145, miR-106) were selected for further validation by real time polymerase chain reaction (RT-PCR). Integrated analysis of aCGH and miRNA data was performed on 14 xenograft passages by bioinformatic methods.</p> <p>Results</p> <p>The most frequent losses and gains of DNA copy number were detected at 9p21.3, 16q and at 8, 15, 17q21.32-qter, 1q21.1-qter, respectively. The presence of these alterations was consistent in all tumor passages. aCGH profiles of xenograft passages of each series resembled their corresponding primary tumors (passage 0). MiR-21, miR-31, miR-31*, miR-106b, miR-145, miR-150*, miR-371-5p, miR-557 and miR-598 showed recurrently altered expression. These miRNAS were predicted to regulate many ES-associated genes, such as genes of the IGF1 pathway, <it>EWSR1, FLI1 </it>and their fusion gene (<it>EWS-FLI1</it>). Twenty differentially expressed miRNAs were pinpointed in regions carrying altered copy numbers.</p> <p>Conclusion</p> <p>In the present study, ES xenografts were successfully applied for integrated microarray analyses. Our findings showed expression changes of miRNAs that were predicted to regulate many ES associated genes, such as IGF1 pathway genes, <it>FLI1, EWSR1</it>, and the <it>EWS-FLI1 </it>fusion genes.</p
Abnormal expression of apoptosis-related genes in haematological malignancies: Overexpression of MYC is poor prognostic sign in mantle cell lymphoma
The expression of apoptosis-related genes BCL2, BAX, BCL2L1, BCL2A1, MCL1, DAPK1 and MYC was studied by quantitative real-time polymerase chain reaction on total RNA samples from patients with acute lymphoblastic leukaemia (ALL, n = 16), acute myeloid leukaemia (AML, n = 27). chronic myeloid leukaemia (CML, n = 12), mantle cell lymphoma (MCL, n = 19) and chronic lymphoid leukaemia (CLL. n = 32). BCL2, BAX, BCL2A1, MCL1, DAPK1 and MYC were overexpressed in all patient groups. BCL2L1 was underexpressed in CLL and CML, but not in AML, ALL and MCL. MCL1 levels were significantly higher in CD13 and CD33-positive ALL, and in CD56-positive AML samples. BCL2, BCL2L1, BCL2A1 and MCL1 were overexpressed and DAPK1 was underexpressed in CLL samples with a 11q23 deletion. MYC overexpression was significantly associated with shorter overall survival in MCL (P †0.01). AML patients with a normal karyotype showed a higher frequency of BCL2A1 overexpression (P †0.001) than those with an abnormal karyotype.Facultad de Ciencias Naturales y Muse
Abnormal expression of apoptosis-related genes in haematological malignancies: Overexpression of MYC is poor prognostic sign in mantle cell lymphoma
The expression of apoptosis-related genes BCL2, BAX, BCL2L1, BCL2A1, MCL1, DAPK1 and MYC was studied by quantitative real-time polymerase chain reaction on total RNA samples from patients with acute lymphoblastic leukaemia (ALL, n = 16), acute myeloid leukaemia (AML, n = 27). chronic myeloid leukaemia (CML, n = 12), mantle cell lymphoma (MCL, n = 19) and chronic lymphoid leukaemia (CLL. n = 32). BCL2, BAX, BCL2A1, MCL1, DAPK1 and MYC were overexpressed in all patient groups. BCL2L1 was underexpressed in CLL and CML, but not in AML, ALL and MCL. MCL1 levels were significantly higher in CD13 and CD33-positive ALL, and in CD56-positive AML samples. BCL2, BCL2L1, BCL2A1 and MCL1 were overexpressed and DAPK1 was underexpressed in CLL samples with a 11q23 deletion. MYC overexpression was significantly associated with shorter overall survival in MCL (P †0.01). AML patients with a normal karyotype showed a higher frequency of BCL2A1 overexpression (P †0.001) than those with an abnormal karyotype.Facultad de Ciencias Naturales y Muse
Combined use of expression and CGH arrays pinpoints novel candidate genes in Ewing sarcoma family of tumors
<p>Abstract</p> <p>Background</p> <p>Ewing sarcoma family of tumors (ESFT), characterized by t(11;22)(q24;q12), is one of the most common tumors of bone in children and young adults. In addition to <it>EWS/FLI1 </it>gene fusion, copy number changes are known to be significant for the underlying neoplastic development of ESFT and for patient outcome. Our genome-wide high-resolution analysis aspired to pinpoint genomic regions of highest interest and possible target genes in these areas.</p> <p>Methods</p> <p>Array comparative genomic hybridization (CGH) and expression arrays were used to screen for copy number alterations and expression changes in ESFT patient samples. A total of 31 ESFT samples were analyzed by aCGH and in 16 patients DNA and RNA level data, created by expression arrays, was integrated. Time of the follow-up of these patients was 5â192 months. Clinical outcome was statistically evaluated by Kaplan-Meier/Logrank methods and RT-PCR was applied on 42 patient samples to study the gene of the highest interest.</p> <p>Results</p> <p>Copy number changes were detected in 87% of the cases. The most recurrent copy number changes were gains at 1q, 2, 8, and 12, and losses at 9p and 16q. Cumulative event free survival (ESFT) and overall survival (OS) were significantly better (P < 0.05) for primary tumors with three or less copy number changes than for tumors with higher number of copy number aberrations. In three samples copy number imbalances were detected in chromosomes 11 and 22 affecting the <it>FLI1 </it>and <it>EWSR1 </it>loci, suggesting that an unbalanced t(11;22) and subsequent duplication of the derivative chromosome harboring fusion gene is a common event in ESFT. Further, amplifications on chromosomes 20 and 22 seen in one patient sample suggest a novel translocation type between <it>EWSR1 </it>and an unidentified fusion partner at 20q. In total 20 novel ESFT associated putative oncogenes and tumor suppressor genes were found in the integration analysis of array CGH and expression data. Quantitative RT-PCR to study the expression levels of the most interesting gene, <it>HDGF</it>, confirmed that its expression was higher than in control samples. However, no association between <it>HDGF </it>expression and patient survival was observed.</p> <p>Conclusion</p> <p>We conclude that array CGH and integration analysis proved to be effective methods to identify chromosome regions and novel target genes involved in the tumorigenesis of ESFT.</p
Homozygous deletions of cadherin genes in chondrosarcoma-an array comparative genomic hybridization study
Chondrosarcoma is a malignant bone tumor that is often resistant to chemotherapy and radiotherapy. We applied high resolution oligonucleotide array comparative genomic hybridization to 46 tumor specimens from 44 patients with chondrosarcoma and identified several genes with potential importance for the development of chondrosarcoma. Several homozygous deletions were detected. The tumor suppressor genes CDKN2A and MTAP were each homozygously deleted in four of the cases, and the RB1 gene was homozygously deleted in one. Two homozygous deletions of MTAP did not affect CDKN2A. Deletions were also found to affect genes of the cadherin family, including CDH4 and CDH7, each of which had a targeted homozygous loss in one case, and CDH19, which had a targeted homozygous loss in two cases. Loss of the EXT1 and EXT2 genes was uncommon; EXT1 was homozygously deleted in none and EXT2 in two of the cases, and large heterozygous losses including EXT1 and/or EXT2 were seen in three cases. Targeted gains and amplifications affected the MYC, E2F3, CDK6, PDGFRA, KIT, and PDGFD genes in one case each. The data indicate that chondrosarcomas develop through a combination of genomic imbalances that often affect the RB1 signaling pathway. The inactivation of cadherin genes may also be critical in the pathogenesis of the tumor