7 research outputs found

    Impact of a multidisciplinary management team on clinical outcome in ICU patients affected by Gram-negative bloodstream infections: a pre-post quasi-experimental study

    Get PDF
    Background: Bloodstream infections (BSIs) by Gram-negative pathogens play a major role in intensive care patients, both in terms of prevalence and severity, especially if multi-drug resistant pathogens are involved. Early appropriate antibiotic therapy is therefore a cornerstone in the management of these patients, and growing evidence shows that implementation of a multidisciplinary team may improve patients' outcomes. Our aim was to evaluate the clinical and microbiological impact of the application of a multidisciplinary team on critically ill patients. Methods: Pre-post study enrolling critically ill patients with Gram negative bloodstream infection in intensive care unit. In the pre-intervention phase (from January until December 2018) patients were managed with infectious disease consultation on demand, in the post-intervention phase (from January until December 2022) patients were managed with a daily evaluation by a multidisciplinary team composed of intensivist, infectious disease physician, clinical pharmacologist and microbiologist. Results: Overall, 135 patients were enrolled during the study period, of them 67 (49.6%) in the pre-intervention phase and 68 (50.4%) in the post-intervention phase. Median age was 67 (58-75) years, sex male was 31.9%. Septic shock, the need for continuous renal replacement therapy and mechanical ventilation at BSI onset were similar in both groups, no difference of multidrug-resistant organisms (MDRO) prevalence was observed. In the post-phase, empirical administration of carbapenems decreased significantly (40.3% vs. 62.7%, p = 0.02) with an increase of appropriate empirical therapy (86.9% vs. 55.2%, p < 0.001) and a decrease of overall antibiotic treatment (12 vs. 16 days, p < 0.001). Despite no differences in delta SOFA and all-cause 30-day mortality, a significant decrease in microbiological failure (10.3% vs. 29.9%, p = 0.005) and a new-onset 30-day MDRO colonization (8.3% vs. 36.6%, p < 0.001) in the post-phase was reported. At multivariable analysis adjusted for main covariates, the institution of a multidisciplinary management team (MMT) was found to be protective both for new MDRO colonization [OR 0.17, 95%CI(0.05-0.67)] and microbiological failure [OR 0.37, 95%CI (0.14-0.98)]. Conclusions: The institution of a MMT allowed for an optimization of antimicrobial treatments, reflecting to a significant decrease in new MDRO colonization and microbiological failure among critically ill patients

    Potential value of a rapid syndromic multiplex PCR for the diagnosis of native and prosthetic joint infections: a real-world evidence study.

    Get PDF
    Introduction: The BIOFIRE Joint Infection (JI) Panel is a diagnostic tool that uses multiplex-PCR testing to detect microorganisms in synovial fluid specimens from patients suspected of having septic arthritis (SA) on native joints or prosthetic joint infections (PJIs). Methods: A study was conducted across 34 clinical sites in 19 European and Middle Eastern countries from March 2021 to June 2022 to assess the effectiveness of the BIOFIRE JI Panel. Results: A total of 1527 samples were collected from patients suspected of SA or PJI, with an overall agreement of 88.4 % and 85 % respectively between the JI Panel and synovial fluid cultures (SFCs). The JI Panel detected more positive samples and microorganisms than SFC, with a notable difference on Staphylococcus aureus, Streptococcus species, Enterococcus faecalis, Kingella kingae, Neisseria gonorrhoeae, and anaerobic bacteria. The study found that the BIOFIRE JI Panel has a high utility in the real-world clinical setting for suspected SA and PJI, providing diagnostic results in approximately 1 h. The user experience was positive, implying a potential benefit of rapidity of results\u27 turnover in optimising patient management strategies. Conclusion: The study suggests that the BIOFIRE JI Panel could potentially optimise patient management and antimicrobial therapy, thus highlighting its importance in the clinical setting

    Potential value of a rapid syndromic multiplex PCR for the diagnosis of native and prosthetic joint infections: a real-world evidence study

    Get PDF
    Introduction: The BIOFIRE Joint Infection (JI) Panel is a diagnostic tool that uses multiplex-PCR testing to detect microorganisms in synovial fluid specimens from patients suspected of having septic arthritis (SA) on native joints or prosthetic joint infections (PJIs). Methods: A study was conducted across 34 clinical sites in 19 European and Middle Eastern countries from March 2021 to June 2022 to assess the effectiveness of the BIOFIRE JI Panel. Results: A total of 1527 samples were collected from patients suspected of SA or PJI, with an overall agreement of 88.4 % and 85 % respectively between the JI Panel and synovial fluid cultures (SFCs). The JI Panel detected more positive samples and microorganisms than SFC, with a notable difference on Staphylococcus aureus, Streptococcus species, Enterococcus faecalis, Kingella kingae, Neisseria gonorrhoeae, and anaerobic bacteria. The study found that the BIOFIRE JI Panel has a high utility in the real-world clinical setting for suspected SA and PJI, providing diagnostic results in approximately 1 h. The user experience was positive, implying a potential benefit of rapidity of results' turnover in optimising patient management strategies. Conclusion: The study suggests that the BIOFIRE JI Panel could potentially optimise patient management and antimicrobial therapy, thus highlighting its importance in the clinical setting

    Impact of a multidisciplinary management team on clinical outcome in ICU patients affected by Gram-negative bloodstream infections: a pre-post quasi-experimental study

    No full text
    Abstract Background Bloodstream infections (BSIs) by Gram-negative pathogens play a major role in intensive care patients, both in terms of prevalence and severity, especially if multi-drug resistant pathogens are involved. Early appropriate antibiotic therapy is therefore a cornerstone in the management of these patients, and growing evidence shows that implementation of a multidisciplinary team may improve patients’ outcomes. Our aim was to evaluate the clinical and microbiological impact of the application of a multidisciplinary team on critically ill patients. Methods Pre-post study enrolling critically ill patients with Gram negative bloodstream infection in intensive care unit. In the pre-intervention phase (from January until December 2018) patients were managed with infectious disease consultation on demand, in the post-intervention phase (from January until December 2022) patients were managed with a daily evaluation by a multidisciplinary team composed of intensivist, infectious disease physician, clinical pharmacologist and microbiologist. Results Overall, 135 patients were enrolled during the study period, of them 67 (49.6%) in the pre-intervention phase and 68 (50.4%) in the post-intervention phase. Median age was 67 (58–75) years, sex male was 31.9%. Septic shock, the need for continuous renal replacement therapy and mechanical ventilation at BSI onset were similar in both groups, no difference of multidrug-resistant organisms (MDRO) prevalence was observed. In the post-phase, empirical administration of carbapenems decreased significantly (40.3% vs. 62.7%, p = 0.02) with an increase of appropriate empirical therapy (86.9% vs. 55.2%, p < 0.001) and a decrease of overall antibiotic treatment (12 vs. 16 days, p < 0.001). Despite no differences in delta SOFA and all-cause 30-day mortality, a significant decrease in microbiological failure (10.3% vs. 29.9%, p = 0.005) and a new-onset 30-day MDRO colonization (8.3% vs. 36.6%, p < 0.001) in the post-phase was reported. At multivariable analysis adjusted for main covariates, the institution of a multidisciplinary management team (MMT) was found to be protective both for new MDRO colonization [OR 0.17, 95%CI(0.05–0.67)] and microbiological failure [OR 0.37, 95%CI (0.14–0.98)]. Conclusions The institution of a MMT allowed for an optimization of antimicrobial treatments, reflecting to a significant decrease in new MDRO colonization and microbiological failure among critically ill patients

    Human Campylobacter spp. infections in Italy

    No full text
    Purpose: Campylobacter is a frequent cause of enteric infections with common antimicrobial resistance issues. The most recent reports of campylobacteriosis in Italy include data from 2013 to 2016. We aimed to provide national epidemiological and microbiological data on human Campylobacter infections in Italy during the period 2017-2021. Methods: Data was collected from 19 Hospitals in 13 Italian Regions. Bacterial identification was performed by mass spectrometry. Antibiograms were determined with Etest or Kirby-Bauer (EUCAST criteria). Results: In total, 5419 isolations of Campylobacter spp. were performed. The most common species were C. jejuni (n = 4535, 83.7%), followed by C. coli (n = 732, 13.5%) and C. fetus (n = 34, 0.6%). The mean age of patients was 34.61&nbsp;years and 57.1% were males. Outpatients accounted for 54% of the cases detected. Campylobacter were isolated from faeces in 97.3% of cases and in 2.7% from blood. C. fetus was mostly isolated from blood (88.2% of cases). We tested for antimicrobial susceptibility 4627 isolates (85.4%). Resistance to ciprofloxacin and tetracyclines was 75.5% and 54.8%, respectively; resistance to erythromycin was 4.8%; clarithromycin 2% and azithromycin 2%. 50% of C. jejuni and C. coli were resistant to ≄ 2 antibiotics. Over the study period, resistance to ciprofloxacin and tetracyclines significantly decreased (p &lt; 0.005), while resistance to macrolides remained stable. Conclusion: Campylobacter resistance to fluoroquinolones and tetracyclines in Italy is decreasing but is still high, while macrolides retain good activity

    Potential value of a rapid syndromic multiplex PCR for the diagnosis of native and prosthetic joint infections: a real-world evidence study

    No full text
    Introduction: the BIOFIRE Joint Infection (JI) Panel is a diagnostic tool that uses multiplex-PCR testing to detect microorganisms in synovial fluid specimens from patients suspected of having septic arthritis (SA) on native joints or prosthetic joint infections (PJIs).Methods: a study was conducted across 34 clinical sites in 19 European and Middle Eastern countries from March 2021 to June 2022 to assess the effectiveness of the BIOFIRE JI Panel.Results: a total of 1527 samples were collected from patients suspected of SA or PJI, with an overall agreement of 88.4% and 85% respectively between the JI Panel and synovial fluid cultures (SFCs). The JI Panel detected more positive samples and microorganisms than SFC, with a notable difference on Staphylococcus aureus, Streptococcus species, Enterococcus faecalis, Kingella kingae, Neisseria gonorrhoeae, and anaerobic bacteria. The study found that the BIOFIRE JI Panel has a high utility in the real-world clinical setting for suspected SA and PJI, providing diagnostic results in approximately 1h. The user experience was positive, implying a potential benefit of rapidity of results' turnover in optimising patient management strategies.Conclusion: the study suggests that the BIOFIRE JI Panel could potentially optimise patient management and antimicrobial therapy, thus highlighting its importance in the clinical setting.</p
    corecore