53 research outputs found

    A Generic Framework for Criterion-Referenced Assessment of Undergraduate Essays

    Get PDF
    This paper presents a brief review of the relative merits of norm-referenced and criterion-referenced assessment of undergraduate students' written work. Acknowledging that there are both positive and negative aspects of criterion referencing, a generic framework for such assessment of undergraduate essays is presented. It comprises criteria and standards (organised by `dimensions of achievement', i.e. content, process, affect and skills), proficiency standards for English language and communication competence, and cartographic and graphic skills. Problems of implementation include the size and complexity of the framework and the need to interpret and clarify the criteria and standards for students

    Propagating Disturbances in Coronal Loops: A Detailed Analysis of Propagation Speeds

    Full text link
    Quasi-periodic disturbances have been observed in the outer solar atmosphere for many years now. Although first interpreted as upflows (Schrijver et al. (1999)), they have been widely regarded as slow magnetoacoustic waves, due to observed velocities and periods. However, recent observations have questioned this interpretation, as periodic disturbances in Doppler velocity, line width and profile asymmetry were found to be in phase with the intensity oscillations (De Pontieu et al. (2010),Tian1 et al. (2011))}, suggesting the disturbances could be quasi-periodic upflows. Here we conduct a detailed analysis of the velocities of these disturbances across several wavelengths using the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). We analysed 41 examples, including both sunspot and non sunspot regions of the Sun. We found that the velocities of propagating disturbances (PDs) located at sunspots are more likely to be temperature dependent, whereas the velocities of PDs at non sunspot locations do not show a clear temperature dependence. We also considered on what scale the underlying driver is affecting the properties of the PDs. Finally, we found that removing the contribution due to the cooler ions in the 193 A wavelength suggests that a substantial part of the 193 emission of sunspot PDs can be contributed to the cool component of 193\AA.Comment: 26 Papges, 15 Figure

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Solving Non-Boolean Satisfiability Problems with Stochastic Local Search: A Comparison of Encodings.

    No full text
    Much excitement has been generated by the success of stochastic local search procedures at finding solutions to large, very hard satisfiability problems. Many of the problems on which these procedures have been effective are non-Boolean in that they are most naturally formulated in terms of variables with domain sizes greater than two. Approaches to solving non-Boolean satisfiability problems fall into two categories. In the direct approach, the problem is tackled by an algorithm for non-Boolean problems. In the transformation approach, the non-Boolean problem is reformulated as an equivalent Boolean problem and then a Boolean solver is used. This paper compares four methods for solving non-Boolean problems: one direct and three transformational. The comparison first examines the search spaces confronted by the four methods, and then tests their ability to solve random formulas, the round-robin sports scheduling problem, and the quasigroup completion problem. The experiments show that the relative performance of the methods depends on the domain size of the problem and that the direct method scales better as domain size increases. Along the route to performing these comparisons we make three other contributions. First, we generalize Walksat, a highly successful stochastic local search procedure for Boolean satisfiability problems, to work on problems with domains of any finite size. Second, we introduce a new method for transforming non-Boolean problems to Boolean problems and improve on an existing transformation. Third, we identify sufficient conditions for omitting at-least-one and at-most-one clauses from a transformed formula. Fourth, for use in our experiments we propose a model for generating random formulas that vary in domain size but are similar in other respects

    The thermal performance of fuel matrix material in a CO2 atmosphere

    No full text
    The thermal oxidation performance of a semi-graphitic fuel matrix-material has been compared to two grades of nuclear graphite between 600 C and 1200 C in flowing CO2. Fuel matrix material is used to produce compacts or pebbles containing TRISO coated particle fuel for High Temperature Reactors (HTRs). The A3-27 fuel matrix-material grade was compared to NBG-18 and Gilsocarbon nuclear graphite grades. At 1200 C temperatures A3-27 appears to be more reactive than NBG-18, but less so than Gilsocarbon. At 600 C the oxidation rate of A3-27 is comparable to that of NBG-18, but both are significantly higher than that of Gilsocarbon. It is concluded that the comparable thermal oxidation behaviour of graphite and fuel-matrix material suggests that operating temperatures in a CO2 cooled reactor fuelled with TRISO coated particle fuel would not need to be reduced below those considered acceptable for the use of nuclear graphite. © 2013 The Authors. Published by Elsevier B.V. All rights reserved
    corecore