3,193 research outputs found

    Monte Carlo Optimization of Trial Wave Functions in Quantum Mechanics and Statistical Mechanics

    Full text link
    This review covers applications of quantum Monte Carlo methods to quantum mechanical problems in the study of electronic and atomic structure, as well as applications to statistical mechanical problems both of static and dynamic nature. The common thread in all these applications is optimization of many-parameter trial states, which is done by minimization of the variance of the local or, more generally for arbitrary eigenvalue problems, minimization of the variance of the configurational eigenvalue.Comment: 27 pages to appear in " Recent Advances in Quantum Monte Carlo Methods" edited by W.A. Leste

    Universal Dynamics of Independent Critical Relaxation Modes

    Get PDF
    Scaling behavior is studied of several dominant eigenvalues of spectra of Markov matrices and the associated correlation times governing critical slowing down in models in the universality class of the two-dimensional Ising model. A scheme is developed to optimize variational approximants of progressively rapid, independent relaxation modes. These approximants are used to reduce the variance of results obtained by means of an adaptation of a quantum Monte Carlo method to compute eigenvalues subject to errors predominantly of statistical nature. The resulting spectra and correlation times are found to be universal up to a single, non-universal time scale for each model

    Wave speeds and Green’s tensors for shear wave propagation in incompressible, hyperelastic materials with uniaxial stretch

    Get PDF
    Assessing elastic material properties from shear wave propagation following an acoustic radiation force impulse (ARFI) excitation is difficult in anisotropic materials because of the complex relations among the propagation direction, shear wave polarizations, and material symmetries. In this paper, we describe a method to calculate shear wave signals using Green's tensor methods in an incompressible, hyperelastic material with uniaxial stretch. Phase and group velocities are determined for SH and SV propagation modes as a function of stretch by constructing the equation of motion from the Cauchy stress tensor determined from the strain energy density. The Green's tensor is expressed as the sum of contributions from the SH and SV propagation modes with the SH contribution determined using a closed-form expression and the SV contribution determined by numerical integration. Results are presented for a Mooney-Rivlin material model with a tall Gaussian excitation similar to an ARFI excitation. For an experimental configuration with a tilted material symmetry axis, results show that shear wave signals exhibit complex structures such as shear splitting that are characteristic of both the SH and SV propagation modes

    Knitting a Frame [16mm film]

    Get PDF
    The films ‘Knitting a Frame’ and ‘Knitting pattern no.1’, employ common systems of production to reflect issues of time and pattern, exploring analogies between artists’ film/animation and knitting. These films extend the notion that construction of the film/and or fabric can be reliant on programming, controls and human gestures outside of their respective conventions. In ‘Knitting a Frame’ a single frame animation method is used, the act of exposure is instigated by the knitter (themselves), who we see in the image. The wool, also seen, is looped from the knitter over the single frame release of the camera and back to the knitting; when a knitted stitch is made the wool is pulled taught and because of this a single frame exposure is made. The unit of construction, a ‘frame’, is also the product of the knitting, this knitted frame of fabric is held up to the camera signalling the completion of the object and the end of the film

    Monte Carlo computation of correlation times of independent relaxation modes at criticality

    Get PDF
    We investigate aspects of universality of Glauber critical dynamics in two dimensions. We compute the critical exponent zz and numerically corroborate its universality for three different models in the static Ising universality class and for five independent relaxation modes. We also present evidence for universality of amplitude ratios, which shows that, as far as dynamic behavior is concerned, each model in a given universality class is characterized by a single non-universal metric factor which determines the overall time scale. This paper also discusses in detail the variational and projection methods that are used to compute relaxation times with high accuracy

    Transfer-Matrix Monte Carlo Estimates of Critical Points in the Simple Cubic Ising, Planar and Heisenberg Models

    Full text link
    The principle and the efficiency of the Monte Carlo transfer-matrix algorithm are discussed. Enhancements of this algorithm are illustrated by applications to several phase transitions in lattice spin models. We demonstrate how the statistical noise can be reduced considerably by a similarity transformation of the transfer matrix using a variational estimate of its leading eigenvector, in analogy with a common practice in various quantum Monte Carlo techniques. Here we take the two-dimensional coupled XYXY-Ising model as an example. Furthermore, we calculate interface free energies of finite three-dimensional O(nn) models, for the three cases n=1n=1, 2 and 3. Application of finite-size scaling to the numerical results yields estimates of the critical points of these three models. The statistical precision of the estimates is satisfactory for the modest amount of computer time spent

    Excitation Spectrum at the Yang-Lee Edge Singularity of 2D Ising Model on the Strip

    Full text link
    At the Yang-Lee edge singularity, finite-size scaling behavior is used to measure the low-lying excitation spectrum of the Ising quantum spin chain for free boundary conditions. The measured spectrum is used to identify the CFT that describes the Yang-Lee edge singularity of the 2D Ising model for free boundary conditions.Comment: 7 pages, 1 figur

    Accuracy of Electronic Wave Functions in Quantum Monte Carlo: the Effect of High-Order Correlations

    Full text link
    Compact and accurate wave functions can be constructed by quantum Monte Carlo methods. Typically, these wave functions consist of a sum of a small number of Slater determinants multiplied by a Jastrow factor. In this paper we study the importance of including high-order, nucleus-three-electron correlations in the Jastrow factor. An efficient algorithm based on the theory of invariants is used to compute the high-body correlations. We observe significant improvements in the variational Monte Carlo energy and in the fluctuations of the local energies but not in the fixed-node diffusion Monte Carlo energies. Improvements for the ground states of physical, fermionic atoms are found to be smaller than those for the ground states of fictitious, bosonic atoms, indicating that errors in the nodal surfaces of the fermionic wave functions are a limiting factor.Comment: 9 pages, no figures, Late
    corecore