34 research outputs found

    Atypical CTSK Transcripts and ARNT Transcription Read-Through Into CTSK

    Get PDF
    The aryl hydrocarbon receptor nuclear translocator (ARNT) and cathepsin K (CTSK) genes lie in a tandem head-to-tail arrangement on human chromosome 1. The two genes are in extremely close proximity; the usual CTSK transcription start site is less than 1.4 kb downstream of the end of the longest reported ARNT transcript. By generating an RT-PCR product that overlaps both the 3ā€² end of ARNT and the 5ā€² end of CTSK, we show that ARNT transcripts may extend through the ARNTā€“CTSK intergenic region and progress into the CTSK gene. Furthermore, by using quantitative RT-PCR from several tissues to detect the ARNT expression signature in CTSK introns, we show that ARNT transcripts can read through into CTSK as far as CTSK intron 3, extending approximately 3.7 kb downstream of the end of the longest previously described ARNT mRNA. Given that ARNT and CTSK are expressed in an overlapping range of tissues, ARNT read-through may have a negative impact on CTSK transcript levels by interfering with CTSK expression. We also present evidence for novel CTSK transcripts following sequence analysis of CTSK-derived ESTs and RT-PCR products. These transcripts show alternate 5ā€² splicing and or 5ā€² extension and are sometimes initiated from a cryptic alternative promoter which is upstream of the known CTSK promoter and possibly in the 3ā€² UTR of ARNT

    Three Novel Pigmentation Mutants Generated by Genome-Wide Random ENU Mutagenesis in the Mouse

    Get PDF
    Three mutant mice with pigmentation phenotypes were recovered from a genomewide random mouse chemical mutagenesis study. White toes (Whto; MGI:1861986), Belly spot and white toes (Bswt; MGI:2152776) and Dark footpads 2 (Dfp2; MGI:1861991) were identified following visual inspection of progeny from a male exposed to the point mutagen ethylnitrosourea (ENU). In order to rapidly localize the causative mutations, genome-wide linkage scans were performed on pooled DNA samples from backcross animals for each mutant line. Whto was mapped to proximal mouse chromosome (Mmu) 7 between Cen (the centromere) and D7Mit112 (8.0 cM from the centromere), Bswt was mapped to centric Mmul between D1Mit214 (32.1 cM) and D1Mit480 (32.8 cM) and Dfp2 was mapped to proximalMmu4 between Cen and D4Mit18 (5.2 cM). Whto, Bswt and Dfp2 may provide novel starting points in furthering the elucidation of genetic and biochemical pathways relevant to pigmentation and associated biological processes

    Multifactorial Analysis of Differences Between Sporadic Breast Cancers and Cancers Involving BRCA1 and BRCA2 Mutations

    Get PDF
    Background: We have previously demonstrated that breast cancers associated with inherited BRCA1 and BRCA2 gene mutations differ from each other in their histopathologic appearances and that each of these types differs from breast cancers in patients unselected for family history (i.e., sporadic cancers). We have now conducted a more detailed examination of cytologic and architectural features of these tumors. Methods: Specimens of tumor tissue (5-Āµm-thick sections) were examined independently by two pathologists, who were unaware of the case or control subject status, for the presence of cell mitosis, lymphocytic infiltration, continuous pushing margins, and solid sheets of cancer cells; cell nuclei, cell nucleoli, cell necrosis, and cell borders were also evaluated. The resulting data were combined with previously available information on tumor type and tumor grade and further evaluated by multifactorial analysis. All statistical tests are two-sided. Results: Cancers associated with BRCA1 mutations exhibited higher mitotic counts (P = .001), a greater proportion of the tumor with a continuous pushing margin (P<.0001), and more lymphocytic infiltration (P = .002) than sporadic (i.e., control) cancers. Cancers associated with BRCA2 mutations exhibited a higher score for tubule formation (fewer tubules) (P = .0002), a higher proportion of the tumor perimeter with a continuous pushing margin (P<.0001), and a lower mitotic count (P = .003) than control cancers. Conclusions: Our study has identified key features of the histologic phenotypes of breast cancers in carriers of mutant BRCA1 and BRCA2 genes. This information may improve the classification of breast cancers in individuals with a family history of the disease and may ultimately aid in the clinical management of patients. [J Natl Cancer Inst 1998;90:1138-45

    Chromosomal assignment of the human genes coding for the major proteins of the desmosome junction, desmoglein DGI (DSG), desmocollins DGII/III (DSC), desmoplakins DPI/II (DSP), and plakoglobin DPIII (JUP)

    No full text
    We have established PCR assays for the genes coding for the major proteins of the desmosome type of cell junction, the desmosomal cadherins DGI (desmoglein) and DGII/III (desmocollins), and the plaque proteins DPI/II (desmoplakin) and DPIII (plakoglobin) and used them to test human-mouse and human-rat somatic cell hybrids with different contents of human chromosomes. From these data we were able to assign DGI to chromosome 18 (DSG), DGII/III to chromosome 9p (DSC), DPI/II to chromosome 6p21-ter(DSP), and DPIII to chromosome 7 (JUP)
    corecore