1,720 research outputs found

    The Heavy Quark Spin Symmetry Partners of the X(3872)

    Get PDF
    We explore the consequences of heavy quark spin symmetry for the charmed meson-antimeson system in a contact-range (or pionless) effective field theory. As a trivial consequence, we theorize the existence of a heavy quark spin symmetry partner of the X(3872), with JPC=2++J^{PC}=2^{++}, which we call X(4012) in reference to its predicted mass. If we additionally assume that the X(3915) is a 0++0^{++} heavy spin symmetry partner of the X(3872), we end up predicting a total of six D(∗)Dˉ(∗)D^{(*)}\bar{D}^{(*)} molecular states. We also discuss the error induced by higher order effects such as finite heavy quark mass corrections, pion exchanges and coupled channels, allowing us to estimate the expected theoretical uncertainties in the position of these new states.Comment: 18 pages; final version accepted for publicatio

    Momentum-dependent contributions to the gravitational coupling of neutrinos in a medium

    Get PDF
    When neutrinos travel through a normal matter medium, the electron neutrinos couple differently to gravity compared to the other neutrinos, due to the presence of electrons in the medium and the absence of the other charged leptons. We calculate the momentum-dependent part of the matter-induced gravitational couplings of the neutrinos under such conditions, which arise at order g2/MW4g^2/M^4_W, and determine their contribution to the neutrino dispersion relation in the presence of a gravitational potential Ï•ext\phi^{\mathrm{ext}}. These new contributions vanish for the muon and tau neutrinos. For electron neutrinos with momentum KK, they are of the order of the usual Wolfenstein term times the factor (K2/MW2)Ï•ext(K^2/M^2_W)\phi^{\mathrm{ext}}, for high energy neutrinos. In environments where the gravitational potential is substantial, such as those in the vicinity of Active Galactic Nuclei, they could be the dominant term in the neutrino dispersion relation. They must also be taken into account in the analysis of possible violations of the Equivalence Principle in the neutrino sector, in experimental settings involving high energy neutrinos traveling through a matter background.Comment: Minor corrections in the references; one reference adde

    Gate induced enhancement of spin-orbit coupling in dilute fluorinated graphene

    Get PDF
    We analyze the origin of spin-orbit coupling (SOC) in fluorinated graphene using Density Functional Theory (DFT) and a tight-binding model for the relevant orbitals. As it turns out, the dominant source of SOC is the atomic spin-orbit of fluorine adatoms and not the impurity induced SOC based on the distortion of the graphene plane as in hydrogenated graphene. More interestingly, our DFT calculations show that SOC is strongly affected by both the type and concentrations of the graphene's carriers, being enhanced by electron doping and reduced by hole doping. This effect is due to the charge transfer to the fluorine adatom and the consequent change in the fluorine-carbon bonding. Our simple tight-binding model, that includes the SOC of the 2p2p orbitals of F and effective parameters based on maximally localized Wannier functions, is able to account for the effect. The strong enhancement of the SOC induced by graphene doping opens the possibility to tune the spin relaxation in this material.Comment: 9 pages, 8 figure

    Diffusion of fluorine adatoms on doped graphene

    Get PDF
    We calculate the diffusion barrier of fluorine adatoms on doped graphene in the diluted limit using Density Functional Theory. We found that the barrier Δ\Delta strongly depends on the magnitude and character of the graphene's doping (δn\delta n): it increases for hole doping (δn<0\delta n<0) and decreases for electron doping (δn>0\delta n>0). Near the neutrality point the functional dependence can be approximately by Δ=Δ0−α δn\Delta=\Delta_0-\alpha\, \delta n where α≃6×10−12\alpha\simeq6\times10^{-12} meVcm2^2. This effect leads to significant changes of the diffusion constant with doping even at room temperature and could also affect the low temperature diffusion dynamics due to the presence of substrate induced charge puddles. In addition, this might open up the possibility to engineer the F dynamics on graphene by using local gates.Comment: 4 pages, 4 figure

    Reply to Comment on ``Can gravity distinguish between Dirac and Majorana neutrinos?''

    Get PDF
    This is a reply to a comment (gr-qc/0610098) written by Nieves and Pal about our paper (gr-qc/0605153) published in Phys. Rev. Lett. 97, 041101 (2006).Comment: 1 page, no figures, REVTe

    Theoretical Response to the Discovery of Deeply Bound Pionic States in 208Pb(d,3He) reactions

    Get PDF
    Recently, deeply bound pionic states were found experimentally in (d, 3^3He) reactions on 208^{208}Pb. They found an isolated peak structure in the bound region below the pion production threshold. We study theoretically these excitation functions in (d, 3^3He) reactions on 208^{208}Pb at Td_d=600 MeV. We found very good agreement with the (d, 3^3He) excitation functions and could identify the underlying structures of the pionic states. We study the energy dependence of the (d, 3^3He) reactions and the change of the excitation functions with the incident energy.Comment: 5 pages, Latex, Figures available on request, Z.Phys.A.accepte

    The X(3872) and other X,Y,Z Resonances as Hidden Charm Meson-Meson Molecules

    Full text link
    We report on some ideas concerning the nature of the X(3872) resonance and the need for approximately equal charged and neutral components of DDˉ∗+ccD \bar{D}^* +cc. Then we discuss how some hidden charm states are obtained from the interaction between vector mesons with charm and can be associated to some of the charmonium-like X,Y,Z states. Finally we discuss how the nature of these states could be investigated through different types of radiative decay.Comment: Presented at the Charm2010 Workshop, Beijing, Oct. 201

    Deriving the existence of BBˉ∗B\bar{B}^* bound states from the X(3872) and Heavy Quark Symmetry

    Full text link
    We discuss the possibility and the description of bound states between BB and Bˉ∗\bar{B}^* mesons. We argue that the existence of such a bound state can be deduced from (i) the weakly bound X(3872) state, (ii) certain assumptions about the short range dynamics of the DDˉ∗D\bar{D}^* system and (iii) heavy quark symmetry. From these assumptions the binding energy of the possible BBˉ∗B\bar{B}^* bound states is determined, first in a theory containing only contact interactions which serves as a straightforward illustration of the method, and then the effects of including the one pion exchange potential are discussed. In this latter case three isoscalar states are predicted: a positive and negative C-parity 3S1−3D1^3S_1-{}^3D_1 state with a binding energy of 20 MeV20\,{\rm MeV} and 6 MeV6\,{\rm MeV} below threshold respectively, and a positive C-parity 3P0^3P_0 shallow state located almost at the BBˉ∗B\bar{B}^* threshold. However, large uncertainties are generated as a consequence of the 1/mQ1/m_Q corrections from heavy quark symmetry. Finally, the newly discovered isovector Zb(10610)Z_b(10610) state can be easily accommodated within the present framework by a minor modification of the short range dynamics.Comment: 21 pages, 3 figures; a sign error in the potential has been corrected and new predictions have been compute
    • …
    corecore