1,431 research outputs found

    The performance and application of high speed long life LH2 hybrid bearings for reusable rocket engine turbomachinery

    Get PDF
    Data are presented for two different experimental programs which were conducted to investigate the characteristics of a hybrid (hydrostatic/ball) bearing operating in liquid hydrogen. The same bearing design was used in both programs. Analytical predictions were made of the bearing characteristics and are compared with the experimental results when possible. The first program used a bearing tester to determine the steady state, transient, and cyclic life characteristics of the bearing over a wide range of operating conditions. The second program demonstrated the feasibility of applying hybrid bearings to an actual high speed turbopump by retrofitting and then testing an existing liquid hydrogen turbopump with the bearings

    High-fidelity simulations of CdTe vapor deposition from a new bond-order potential-based molecular dynamics method

    Full text link
    CdTe has been a special semiconductor for constructing the lowest-cost solar cells and the CdTe-based Cd1-xZnxTe alloy has been the leading semiconductor for radiation detection applications. The performance currently achieved for the materials, however, is still far below the theoretical expectations. This is because the property-limiting nanoscale defects that are easily formed during the growth of CdTe crystals are difficult to explore in experiments. Here we demonstrate the capability of a bond order potential-based molecular dynamics method for predicting the crystalline growth of CdTe films during vapor deposition simulations. Such a method may begin to enable defects generated during vapor deposition of CdTe crystals to be accurately explored

    Application of quantum Darwinism to a structured environment

    Get PDF
    Quantum Darwinism extends the traditional formalism of decoherence to explain the emergence of classicality in a quantum universe. A classical description emerges when the environment tends to redundantly acquire information about the pointer states of an open system. In light of recent interest, we apply the theoretical tools of the framework to a qubit coupled with many bosonic subenvironments. We examine the degree to which the same classical information is encoded across collections of (i) complete subenvironments and (ii) residual “pseudomode” components of each subenvironment, the conception of which provides a dynamic representation of the reservoir memory. Overall, significant redundancy of information is found as a typical result of the decoherence process. However, by examining its decomposition in terms of classical and quantum correlations, we discover classical information to be nonredundant in both cases i and ii. Moreover, with the full collection of pseudomodes, certain dynamical regimes realize opposite effects, where either the total classical or quantum correlations predominantly decay over time. Finally, when the dynamics are non-Markovian, we find that redundant information is suppressed in line with information backflow to the qubit. By quantifying redundancy, we concretely show it to act as a witness to non-Markovianity in the same way as the trace distance does for nondivisible dynamical maps

    Entanglement Evolution in the Presence of Decoherence

    Get PDF
    The entanglement of two qubits, each defined as an effective two-level, spin 1/2 system, is investigated for the case that the qubits interact via a Heisenberg XY interaction and are subject to decoherence due to population relaxation and thermal effects. For zero temperature, the time dependent concurrence is studied analytically and numerically for some typical initial states, including a separable (unentangled) initial state. An analytical formula for non-zero steady state concurrence is found for any initial state, and optimal parameter values for maximizing steady state concurrence are given. The steady state concurrence is found analytically to remain non-zero for low, finite temperatures. We also identify the contributions of global and local coherence to the steady state entanglement.Comment: 12 pages, 4 figures. The second version of this paper has been significantly expanded in response to referee comments. The revised manuscript has been accepted for publication in Journal of Physics

    Strong "quantum" chaos in the global ballooning mode spectrum of three-dimensional plasmas

    Full text link
    The spectrum of ideal magnetohydrodynamic (MHD) pressure-driven (ballooning) modes in strongly nonaxisymmetric toroidal systems is difficult to analyze numerically owing to the singular nature of ideal MHD caused by lack of an inherent scale length. In this paper, ideal MHD is regularized by using a kk-space cutoff, making the ray tracing for the WKB ballooning formalism a chaotic Hamiltonian billiard problem. The minimum width of the toroidal Fourier spectrum needed for resolving toroidally localized ballooning modes with a global eigenvalue code is estimated from the Weyl formula. This phase-space-volume estimation method is applied to two stellarator cases.Comment: 4 pages typeset, including 2 figures. Paper accepted for publication in Phys. Rev. Letter

    Report on the May-June 2002 Englebright Lake deep coring campaign

    Get PDF
    This report describes the May-June 2002 Englebright Lake coring project. Englebright Lake is a 14-km-long reservoir on the Yuba River of northern California, impounded by Englebright Dam, which was completed in 1940. The sediments were cored to assess the current conditions in the reservoir as part of the California Bay-Delta Authority’s Upper Yuba River Studies Program. Sediment was collected using both hydraulic-piston and rotational coring equipment mounted on a floating drilling platform. Thirty boreholes were attempted at 7 sites spaced along the longitudinal axis of the reservoir. Complete sedimentary sections were recovered from 20 boreholes at 6 sites. In total, 335 m of sediment was cored, with 86% average recovery. The core sections (each up to 1.5 m long) were processed using a standard set of laboratory techniques, including geophysical logging of physical properties, splitting, visual descriptions, digital photography, and initial subsampling. This report presents the results of these analyses in a series of stratigraphic columns. Using the observed stratigraphy as a guide, several series of subsamples were collected for various sedimentologic, geochemical, and geochronological analyses. The results of laboratory analyses of most of these subsamples will be presented in future reports and articles

    Suppression of decoherence by bath ordering

    Full text link
    The dynamics of two coupled spins-1/2 coupled to a spin-bath is studied as an extended model of the Tessieri-Wilkie Hamiltonian \cite{TWmodel}. The pair of spins served as an open subsystem were prepared in one of the Bell states and the bath consisted of some spins-1/2 is in a thermal equilibrium state from the very beginning. It is found that with the increasing the coupling strength of the bath spins, the bath forms a resonant antiferromagnetic order. The polarization correlation between the two spins of the subsystem and the concurrence are recovered in some extent to the isolated subsystem. This suppression of the subsystem decoherence may be used to control the quantum devices in practical applications.Comment: 32 pages, Chinese Physics (accepted

    An Authorization Framework Resilient to Policy Evaluation Failures

    Full text link
    corecore