1,781 research outputs found

    Health-care district management information system plan: Review of operations analysis activities during calendar year 1975 and plan for continued research and analysis activities

    Get PDF
    Operations research activities developed to identify the information required to manage both the efficiency and effectiveness of the Veterans Administration (VA) health services as these services relate to individual patient care are reported. The clinical concerns and management functions that determine this information requirement are discussed conceptually. Investigations of existing VA data for useful management information are recorded, and a diagnostic index is provided. The age-specific characteristics of diseases and lengths of stay are explored, and recommendations for future analysis activities are articulated. The effect of the introduction of new technology to health care is also discussed

    Entangling photons using a charged quantum dot in a microcavity

    Full text link
    We present two novel schemes to generate photon polarization entanglement via single electron spins confined in charged quantum dots inside microcavities. One scheme is via entangled remote electron spins followed by negatively-charged exciton emissions, and another scheme is via a single electron spin followed by the spin state measurement. Both schemes are based on giant circular birefringence and giant Faraday rotation induced by a single electron spin in a microcavity. Our schemes are deterministic and can generate an arbitrary amount of multi-photon entanglement. Following similar procedures, a scheme for a photon-spin quantum interface is proposed.Comment: 4 pages, 4 figure

    Tunneling Qubit Operation on a Protected Josephson Junction Array

    Full text link
    We discuss a protected quantum computation process based on a hexagon Josephson junction array. Qubits are encoded in the punctured array, which is topologically protected. The degeneracy is related to the number of holes. The topological degeneracy is lightly shifted by tuning the flux through specific hexagons. We also show how to perform single qubit operation and basic quantum gate operations in this system.Comment: 8 pages, 4 figures. The published version in Phys. Rev., A81(2010)01232

    A New Look at the Axial Anomaly in Lattice QED with Wilson Fermions

    Get PDF
    By carrying out a systematic expansion of Feynman integrals in the lattice spacing, we show that the axial anomaly in the U(1) lattice gauge theory with Wilson fermions, as determined in one-loop order from an irrelevant lattice operator in the Ward identity, must necessarily be identical to that computed from the dimensionally regulated continuum Feynman integrals for the triangle diagrams.Comment: 1 figure, LaTeX, 18 page

    Orbits of quantum states and geometry of Bloch vectors for NN-level systems

    Full text link
    Physical constraints such as positivity endow the set of quantum states with a rich geometry if the system dimension is greater than two. To shed some light on the complicated structure of the set of quantum states, we consider a stratification with strata given by unitary orbit manifolds, which can be identified with flag manifolds. The results are applied to study the geometry of the coherence vector for n-level quantum systems. It is shown that the unitary orbits can be naturally identified with spheres in R^{n^2-1} only for n=2. In higher dimensions the coherence vector only defines a non-surjective embedding into a closed ball. A detailed analysis of the three-level case is presented. Finally, a refined stratification in terms of symplectic orbits is considered.Comment: 15 pages LaTeX, 3 figures, reformatted, slightly modified version, corrected eq.(3), to appear in J. Physics

    A Description of Kitaev's Honeycomb Model with Toric-Code Stabilizers

    Get PDF
    We present a solution of Kitaev's spin model on the honeycomb lattice and of related topologically ordered spin models. We employ a Jordan-Wigner type fermionization and find that the Hamiltonian takes a BCS type form, allowing the system to be solved by Bogoliubov transformation. Our fermionization does not employ non-physical auxiliary degrees of freedom and the eigenstates we obtain are completely explicit in terms of the spin variables. The ground-state is obtained as a BCS condensate of fermion pairs over a vacuum state which corresponds to the toric code state with the same vorticity. We show in detail how to calculate all eigenstates and eigenvalues of the model on the torus. In particular, we find that the topological degeneracy on the torus descends directly from that of the toric code, which now supplies four vacua for the fermions, one for each choice of periodic vs. anti-periodic boundary conditions. The reduction of the degeneracy in the non-Abelian phase of the model is seen to be due to the vanishing of one of the corresponding candidate BCS ground-states in that phase. This occurs in particular in the fully periodic vortex-free sector. The true ground-state in this sector is exhibited and shown to be gapped away from the three partially anti-periodic ground-states whenever the non-Abelian phase is gapped.Comment: 10 pages, 4 figure

    Anonymous shell companies: A global audit study and field experiment in 176 countries

    Get PDF
    To test whether firms behave consistently with international law prohibiting anonymous incorporation, we conducted a global audit study and field experiment, using data from 1639 incorporation firms in 176 countries. We requested anonymous incorporation and randomly assigned references to international law, threat of penalties, norms of appropriate behavior, or a placebo. We find a substantial number of firms willing to flout international standards and show that those in OECD countries proved significantly less compliant with rules than in developing countries or tax havens. Firms in tax havens displayed significantly greater compliance and were sensitive to experimental interventions invoking international law

    Age of the Peach Springs Tuff, Southeastern California and Western Arizona

    Get PDF
    Sanidine separates from pumice of the early Miocene Peach Springs Tuff are concordantly dated at 18.5 ± 0.2 Ma by two isotopic techniques. The Peach Springs Tuff is the only known unit that can be correlated between isolated outcrops of Miocene strata from the central Mojave Desert of southeastern California to the western Colorado Plateau in Arizona, across five structural provinces, a distance of 350 km. Thus the age of the Peach Springs Tuff is important to structural and paleogeographic reconstructions of a large region. Biotite and sanidine separates from bulk samples of the Peach Springs Tuff from zones of welding and vapor-phase alteration have not produced consistent ages by the K-Ar method. Published ages of mineral separates from 17 localities ranged from 16.2 to 20.5 Ma. Discordant 40Ar/39Ar incremental release spectra were obtained for one biotite and two of the sanidine separates. Ages that correspond to the last gas increments are as old as 27 Ma. The 40Ar/39Ar incremental release determinations on sanidine separated from blocks of Peach Springs Tuff pumice yield ages of 18.3 ± 0.3 and 18.6 ± 0.4 Ma. Laser fusion measurements yield a mean age of 18.51 ± 0.10. The results suggest that sanidine and biotite K-Ar ages older than about 18.5 Ma are due to inherited Ar from pre-Tertiary contaminants, which likely were incorporated into the tuff during deposition. Sanidine K-Ar ages younger than 18 Ma probably indicate incomplete extraction of radiogenic 40Ar, whereas laser fusion dates of biotite and hornblende younger than 18 Ma likely are due to postdepositional alteration. Laser fusion ages as high as 19.01 Ma on biotite grains from pumice suggest that minerals from pre-Tertiary country rocks also were incorporated in the magma chamber
    • 

    corecore