View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by DIAS Access to Institutional Repository

A Description of Kitaev’'s Honeycomb model with Toric-Code Stabilizers
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We present a description of the Kitaev honeycomb latticeehad a BCS type system. A 2-dimensional
fermionization procedure is outlined and the derived eitgges of the system are shown to be Cooper-paired
products of toric-code states. We extend our analysis tous tgiving particular attention to the ground state of
the fully periodic vortex-free sector.

PACS numbers: 05.30.Pr, 75.10.Jm, 03.65.Vf

In the seminal work on his honeycomb lattice model, Ki-
taev outlined a connection between the non-Abelian phase
of the system and chiral p-wave superconductars [1]. This
has been made more explicit recently where a number of
authors (see for examplgl [2, 3]) have connected the ground
state sector of the system with the spinless p-wave Hamilto-
nian used inl[4] to relate the BCS wavefunction [5] and the
Moore-Read Pfaffian _[6]. One of the drawbacks of the var-
ious fermionization techniques is that they tend to obscure
the re-interpretation of these states in terms of the thg-ori
nal spin quantum numbers. This has hindered the comparison
of the BCS state with the extensive perturbative predistion
on the modell[1,17.18.,/9, 10, 11] and in turn clouded the un+jce with the two unit vectorss, andn, as shown in FIG.
derstanding of the topological transition between nonlabe [1, By contracting each-link to a single point we define
and Abelian phases of the system, the latter of which, in thene position vector labeling the z-dimers on a square kttic
leading non-trivial order, is equivalent to the x Z, toric-  asq = g,n, + g,n,,.
co|c_1||e [12]. 1 outl Cfermionizat dure that Consider now loops of K  operators,

ere we will outline an exact fermionization procedure that -, ;@ (n)

is closely related to the perturbative analysig of [[7/[18, 9]. i KGh e Ki where o™ ¢ Yz AN

. . == “I'loop constructed in this way commutes with the Hamiltonian
The technique can be U.S?d to mcludg terms .that break UM&nd with all other loops. The shortest loop symmetries are th
reversal symmetry and it is thus possible, as in [3], to reduc laquette operators
the system exactly to the form used by Read and Gieen [4f
Importantly the procedure also allows the eigenstates ef th
system to be interpreted as BCS products of toric-codesstate
thereby illuminating the relationship between the Abead  \here the numbers through6 label lattice sites on single
the non-Abelian topological phases. This interpretatian ¢ hexagonal plaquette, see FIG. 1. We will use the conven-
also be applied without conflict to other studies of the syste tjon thatq denotes the-dimer at the bottom of the plaque-
based on alternative fermionization methods, see for el@mptte. The commutation relations imply that we may choose en-
[1,12,13,113, 14, 15, 16, 17, 18,119,120/ 21} 22, 23, 24]. Wegrgy eigenvectorsn) such thatiVy, = (n|W|n) = 1. If
finish by Outlining how to extend the method to a torus anqu = —1thenwe say that the Stalte> carries a vortex at
discuss the role that the homologically non-trivial looprsy On a torus, the plaguette operators are not independent, as
metries must play in any interpretation of the system as a sy obey[[ W, = I. There are also two independent homo-
perconducting fluid. We give particular attention to théyful  |ogically non-trivial loop symmetries. We are free to cheos
periodic vortex free sector and show how derive the correchny two closed loop operators that traverse the torus as long

FIG. 1: The plaquette operat®¥ and the fermionic string
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low-energy states from the BCS product. as they cannot be deformed into each other (by plaquette mul-
The system consists of spins on the sites of a hexagongiication). The other homologically non-trivial loopsyne-
lattice. The Hamiltonian can be written as tries can be constructed from the products of these two oper-
H—_ Z Z JLK 1) ators and théV/2 — 1 independent plaquette operators, see

[10]. Note that when the periodicity of the toroidal configu-
ration is specified by lattice vectors which are integer mult
where K = of*cf denotes a directional spin exchange in-ples of the unit vectors i.eX = N,n, andY = Nyn,,
teraction occurring between the siteg connected by a- it is natural to use the overlapping products of alternating
link see FIG[1. We define a the basic unit cell of the lat-andz-links (L, = HKijfk) and alternating- andy-links

ac{z,y,z} i.J
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(Ly = HKij;.’k) as the two independent homologically
non-trivial symmetries.

The Hamiltonian[{lL) is often extended to include perturb-
ing terms that (i) are sums df operator products (ii) open

a gap in the B-phase (iii) break time-reversal symmetry (T-
symmetry), see [1,3, 18] and the general analysis of the link
or bond algebras in_[23]. The breaking of T-symmetry is es-

sential for relating the model to chiral p-wave superconduc
tors. A generalisation of the type given in [3] is needed tb ge
the precisgk, + ik,) pairing symmetry related to the Ising
CFT model and the = 5/2 quantum Hall state through the
Moore-Read Pfaffian [4]. As the procedure we will outline

here gives the same physical results as the quoted referend

for generalised T-symmetry breaking we will keep the discus
sion as simple as possible here and restrict the explicteal
lations to the original T-symmetric terms.

We begin our derivation by first noting that inl [7], the

effective lattice. We have in this case

qy
qu,qy H qu,q;
4, =0

qy

(I = 2N 0)I = 2N, q,) ] Qugy (M

q,=0

and we see that only the bosons at the upper and lower left

corners of the plaquette product need to be taken into atcoun
The relation[(6) allows one to write down an orthonormal

basis for the full honeycomb(brick-wall) system [9]. Expli

tly we can write| {Qq},{q}) where the quantum numbers

are the eigenvalueQ, of the operatoiQ, and the bosonic

position vectorgy. Any state with a giver{g} is determined,

up to a phase, by the stabilizegk, |1/) = +[), that reflect

the underlying vorticity and bosonic position vectorsptigh

Hamiltonian 1) was written in terms hard-core bosons and€ mappingl(4). The statdQq}, {0}) VQq = 1is unitarily

effective spins of the z-dimers using the mapping:

[ 1,0), | lalg) =11,0),
|1, | laTo) =1 41).

| T.TD> -
| Twlo)

(3)

equivalent to the toric-code ground state in the squariedatt
effective spin representatian [1,/12] and from the perttiona
theory this state is known to be the leading contributiort t
actual ground state of the full hexagonal system [8, 10]. To
fully specify a state on a torus one must also specify two ad-

The labels on the L.H.S. indicate the states of the z-dimer ilitional quantum numbers associated with the homologicall
the computational basis. The first quantum number of the ketgon-trivial loop symmetries. In our case we choose theseto b

on the R.H.S. represents the effective spin of the squdiedat
and the second is the bosonic occupation number. The pre
ence of a boson indicates an anti-ferromagnetic configurati
of the spins connected byzalink.

The operations of the original spin Hamiltonian then be-
come (see [7/8,9])

Oqm = Tflﬂ(b% +bg) s 0gn= bjl + l;q’
TR L BRI BELE D IO
Oom=Ta  Oan = Tq (I - 2bqbq),

whererg is the Pauli operator acting on the effective spin at
positiong andb’ (b ) are the canonical creation(annihilation)
operators for the hard-core bosons. In this notation theiHam
tonian itself becomes

H = —J, Y (bl +b)7e s, (b, +bgim.)

b

q
Jy Z iTé (bjz - bq)Tg-&-ny( q+ny + bq+ny)
q

Jo Y (I —2bjb,). (5)
q

In this representation the plaquette operators of the rwalgi
Hamiltonian are

Wq = (I - 2Nq)(I - 2Nq+ny)Qq (6)
whereNg = bl b, andQy = 77 Ty, Tgin, Tarn- We can
generalise the expressidg (6) to include products of pligue
operators. Of particular importance later, because of ¢ime ¢
ventions used, will be the products arranged verticallytan t

the eigenvaluek, andi, of the operatord ,, andL, described
gbove.

We now define a particular string operator using overlap-
ping products of thek: terms of the original Hamiltonian.
The primary function of the string will be to break/fix
dimers at a particular locatiapof the lattice. Our convention
will be to first apply a single® term to a black site which we
set to be the origin. The rest of the string is made by applying
first alternating’;; and K5, until we reach a required length
and then apply alternating,, andKY,,, terms ending on the
black site ag, see FIG[L. Explicitly we write

Sq =

z
(gz,9y—1)O

(8)

O‘?‘Zmﬂy)vla?‘lmﬂy_l)aﬂa
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Using the representation of| [7, 8, 9] we can decompike (8)
into the effective spin and bosonic subspaces, i&. =

Se ® Sp. In this decomposition there are four different types
of structures to observe on the effective lattice: (1) tine i
including the starting poind up to, but not including, the
turning pointB, (2) the turning poinB = (g, 0), (3) the ex-
clusive intervalBC, and (4) the end poir®’ = (¢., gy), See
FIG[2 and TABLH].

The operatoiS, squares to unity while different operators
Sq, Sq anti-commute with each other. This lead us to identify
the stringS, with the following sum of fermionic creation and
annihilation operatorsS, = c}, +cq = (b} +b,)S, wheres,,
can be determined from TABLE I. Individually our fermionic
canonical creation and annihilation operators are

ch =blS,, g =045, 9)
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4 C with the Fourier transforme, = M~1/23 cxe’™ 9. After

' + b:)'TJT-?! substitution into[(Il1) and anti-symmetrization we have

| 1
S H=Y" [gkc};ck. + E(Ac};ct w + A per)| +C (12)
- = - g
X T where, = e — p With e, = 2J, cos(kz) + 2Jy cos(ky)
(I_ZbTIHZ andy = —2J,. The gap function isxﬁlk = ag + 0k Wit.h
W, A Lz —25') AI — 2b1h) B ap = 0 andf, = 2J, slln(k?) +2J, sm(ky) If thg Hamll-
(I_wzz TV - - L ’ tonian is extended, as in Kitaev’s original analysis, tdude
-7 -7 - the single products of adjaceht-operators ( formula (46) of

[1]) one getsay, = 4k(sin(ky) — sin(ky) — sin(ky — ky))

and the formFE}, is in exact agreement with the dispersion re-
lation derived there. The procedure also gives agreeméint wi
the other fermionization techniques to analyse the exende

FIG. 2: Bosonic and effective spin decomposition of the afmr
string S.

S Se ® S model [2/13| 14, 16, 18]. We note in particular that the tech-
[AB) 00iogon —T"®1—2b'b nique can be used to replicate the dispersion relations]of [3
B olojogom —T!®I where the p-wave pairing can be tuned to hiaye- ik, chiral
(B.C) Yo 0oy 1°®1 symmetry thus allowing a direct link with the work of Read
’ Oo"0"m m . I A
C ol Y obl+b and Green [4] and subsequent analysis[26] 27, 28, 29]; relat

ing the Pfaffian Quantum Hall states, p-wave supercondsictor

TABLE I: The string.S as four unique segments. While bosons are@nd Ising to_polo.gical quel_. . .
only created/destroyed at the endpdihof the string, the sites in the The _HamlltonlanE(IlZ) is diagonalized by BOQO“UbOV_ trans-
[A, B) interval also have non-trivial bosonic dependence. formationy, = ugc, — vic!,, whereu, andvy satisfy

lugl?> + k> = 1. We haveH = Y Ep(yvjvk — 1/2),

. . with B, = /€2 + |Agl?, = +/1/2(1 E), and
where the strings now insure that the operatérandc obey - k 17301 E’“ +/|Ek)|® uv’\c/ith o —/s( tf:]/Ak))/ )
the canonical fermionic anti-commutator relations. Itris i % = 1V 1/2(1 = &/ Ej) O v k= SQN(—IM(A)/ Lk
: e The ground state, annihilated by ajl,, and of energy
portant to note that, because of the identification of the sunb 1 : .
+ . . f s = —73 fEkdk, can by inspection be seen to be the BCS
¢}, + cq With the stringSy, that operators], andc, must both tvpe state
create/annihilate vortices gt= (—1,0) andg = (—1,-1) . yp
However, quadratic terms of fermionic operators will alway _ +ot
preserve the underlying vorticity. This has interestingss g9 = 1;[(% + Ukckcly) | Vag. (13)
guences later when we examine the system on a torus.
Similar to [1,/14], we now introduce the generic quadraticThis expression is similar to the one obtained in Ref. [2],
Hamiltonian but we note that our fermionization procedure has been de-
signed such that the vacuum state is the toric-code ground
fqq' Dqq Cq’
CII/

! +C  (10) state| {Q,}, {0}) defined on the effective lattice, while the
Agg — fq/ operators*clT are, by definition, the Fourier superpositions of
If we invert (3) and substitute the relevant expressiorsting
Hamiltonian [b) we get the forni_(10) with

m=[e e

the state${Q, }, {q}). Note that in the corner of thé phase

(J. =1, J;,Jy, — 0) we haveu, — 1 andv, — 0 and thus

the ground state of the full systergs) — [ {Q,}, {0}) as ex-

€oo = 2.0 0+ JoF (Goar i ) pected. The expressidn (13) is, to the best of our knowledge,
a9 4 =y \Ta g e TN tne,q the first closed form expression for this state that doeseot r

+ Jy(0q.q+n, +0qin,.qa) quire additional spectral projection. It is also notewgrtie-

Agy = JoFq-n,(0q,q+n. — Og+n..q") cause it combines two powerful wavefunction descriptas i.

(11) Cooper pairing and the Stabilizer formalism.

The Hamiltonian [(I0) may be diagonalised for arbitrary
andC = —M.J, whereM the number of effective spins and vortex configurations on a torus using the multimode Bogoli-
F, is defined in[[¥). We restrict the Hilbert space to theubov transformationy, = Y, (uuc; — vic}). The quasi-
relavent vortex-configuration by replacirdg, by the eigen-  particle excitation energi; and the vectors;; andv;; are ob-
valuesFy, of that configuration. In the simplest case of the tained by solving the Bogoliubov-de-Gennes eigenvalubpro
vortex free sector we have, = 1 Vg. This sector, be- lem

+ Jy(éq,q’ﬁ-ny - 5q+ny,q/)

cause of the theorem by Lieb [25], is known to contain the
system ground state and can be solved exactly in the ther- & A vl _p (14)
modynamic limit by moving to the momentum representation AT —¢T v ’
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where the and A given in [11) are modified to include the conductors, where fermionic electrons and vortices are not
terms that connect both sides of the torus, i.e. the ternts thaependent in the same way. While this result indicates that
connect the site§0, ¢, ) to (N, gy) and(g;,0) to (¢, N,).  the odd fermion single introduced by Read and Green must
The values of these terms are determined from the arrangée degenerate with the even fermion BCS product introduced
ment of vortices and the quantum numbers of the two indeabove, it does not conflict with the general assertion tloat, f

pendent homologically non-trivial loop symmetrigsand/,,. a gapped system, the lowest energy odd fermion state is not

To construct the actual eigenstates using the multimgde part of the groundstate manifold.
it is easiest to use the Hartree-Fock-Bogoliubov (HFB) pro-

jection|gs = [[. vi| vao, where the vacuum state is the ap- . .
J 199 = I, 7/vag P tion Ireland through the President of Ireland Research

propriate toric-code state on the full hexagonal latticéisT o :
state can be brought into BCS forin [13) by making use ofg“év/?,ildlﬁigglf/ 1680 and the Principal Investigator Award

the Bloch-Messiah theorem [30]. For the vortex free sec-
tor, with the important exception of the fully periodic ®tat

with (Iz,1,) = (—1,—1) in the B-phase, one observes that
the eigenstate energy can be simply calculated as a discrete
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