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A Description of Kitaev’s Honeycomb model with Toric-Code Stabilizers
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We present a description of the Kitaev honeycomb lattice model as a BCS type system. A 2-dimensional
fermionization procedure is outlined and the derived eigenstates of the system are shown to be Cooper-paired
products of toric-code states. We extend our analysis to a torus, giving particular attention to the ground state of
the fully periodic vortex-free sector.

PACS numbers: 05.30.Pr, 75.10.Jm, 03.65.Vf

In the seminal work on his honeycomb lattice model, Ki-
taev outlined a connection between the non-Abelian phase
of the system and chiral p-wave superconductors [1]. This
has been made more explicit recently where a number of
authors (see for example [2, 3]) have connected the ground
state sector of the system with the spinless p-wave Hamilto-
nian used in [4] to relate the BCS wavefunction [5] and the
Moore-Read Pfaffian [6]. One of the drawbacks of the var-
ious fermionization techniques is that they tend to obscure
the re-interpretation of these states in terms of the the origi-
nal spin quantum numbers. This has hindered the comparison
of the BCS state with the extensive perturbative predictions
on the model [1, 7, 8, 9, 10, 11] and in turn clouded the un-
derstanding of the topological transition between non-Abelian
and Abelian phases of the system, the latter of which, in the
leading non-trivial order, is equivalent to theZ2 × Z2 toric-
code [12].

Here we will outline an exact fermionization procedure that
is closely related to the perturbative analysis of [7, 8, 9].
The technique can be used to include terms that break time-
reversal symmetry and it is thus possible, as in [3], to reduce
the system exactly to the form used by Read and Green [4].
Importantly the procedure also allows the eigenstates of the
system to be interpreted as BCS products of toric-code states,
thereby illuminating the relationship between the Abelianand
the non-Abelian topological phases. This interpretation can
also be applied without conflict to other studies of the system
based on alternative fermionization methods, see for example
[1, 2, 3, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. We
finish by outlining how to extend the method to a torus and
discuss the role that the homologically non-trivial loop sym-
metries must play in any interpretation of the system as a su-
perconducting fluid. We give particular attention to the fully
periodic vortex free sector and show how derive the correct
low-energy states from the BCS product.

The system consists of spins on the sites of a hexagonal
lattice. The Hamiltonian can be written as

H = −
∑

α∈{x,y,z}

∑

i,j

JαK
α
i,j (1)

whereKα
ij = σα

i σ
α
j denotes a directional spin exchange in-

teraction occurring between the sitesi, j connected by aα-
link see FIG. 1. We define a the basic unit cell of the lat-

FIG. 1: The plaquette operatorW and the fermionic stringS

tice with the two unit vectorsnx andny as shown in FIG.
1. By contracting eachz-link to a single point we define
the position vector labeling the z-dimers on a square lattice
asq = qxnx + qyny.

Consider now loops of K operators,
Kα(1)

ij Kα(2)

jk , ......,Kα(n)

li , where α(m) ∈ x, y, z. Any
loop constructed in this way commutes with the Hamiltonian
and with all other loops. The shortest loop symmetries are the
plaquette operators

W q = σz
1σ

x
2σ

y
3σ

z
4σ

x
5σ

y
6 , (2)

where the numbers1 through6 label lattice sites on single
hexagonal plaquette, see FIG. 1. We will use the conven-
tion thatq denotes thez-dimer at the bottom of the plaque-
tte. The commutation relations imply that we may choose en-
ergy eigenvectors|n〉 such thatWq = 〈n |W q|n〉 = ±1. If
Wq = −1 then we say that the state|n〉 carries a vortex atq.

On a torus, the plaquette operators are not independent, as
they obey

∏

Wq = I. There are also two independent homo-
logically non-trivial loop symmetries. We are free to choose
any two closed loop operators that traverse the torus as long
as they cannot be deformed into each other (by plaquette mul-
tiplication). The other homologically non-trivial loop symme-
tries can be constructed from the products of these two oper-
ators and theN/2 − 1 independent plaquette operators, see
[10]. Note that when the periodicity of the toroidal configu-
ration is specified by lattice vectors which are integer multi-
ples of the unit vectors i.e.X = Nxnx andY = Nyny,
it is natural to use the overlapping products of alternatingz-
andx-links (Lx =

∏

Kz
ijK

x
jk) and alternatingz- andy-links
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(Ly =
∏

Kz
ijK

y
jk) as the two independent homologically

non-trivial symmetries.
The Hamiltonian (1) is often extended to include perturb-

ing terms that (i) are sums ofK operator products (ii) open
a gap in the B-phase (iii) break time-reversal symmetry (T-
symmetry), see [1, 3, 18] and the general analysis of the link
or bond algebras in [23]. The breaking of T-symmetry is es-
sential for relating the model to chiral p-wave superconduc-
tors. A generalisation of the type given in [3] is needed to get
the precise(kx + iky) pairing symmetry related to the Ising
CFT model and theν = 5/2 quantum Hall state through the
Moore-Read Pfaffian [4]. As the procedure we will outline
here gives the same physical results as the quoted references
for generalised T-symmetry breaking we will keep the discus-
sion as simple as possible here and restrict the explicit calcu-
lations to the original T-symmetric terms.

We begin our derivation by first noting that in [7], the
Hamiltonian (1) was written in terms hard-core bosons and
effective spins of the z-dimers using the mapping:

| ↑
�
↑

�
〉 = | ⇑, 0〉, | ↓

�
↓

�
〉 = | ⇓, 0〉, (3)

| ↑
�
↓

�
〉 = | ⇑, 1〉, | ↓

�
↑

�
〉 = | ⇓, 1〉.

The labels on the L.H.S. indicate the states of the z-dimer in
the computational basis. The first quantum number of the kets
on the R.H.S. represents the effective spin of the square lattice
and the second is the bosonic occupation number. The pres-
ence of a boson indicates an anti-ferromagnetic configuration
of the spins connected by az-link.

The operations of the original spin Hamiltonian then be-
come (see [7, 8, 9])

σx
q,�

= τx
q (b†q + bq) , σx

q,�
= b†q + bq,

σy
q,�

= τy
q (b†q + bq) , σy

q,�
= i τz

q (b†q − bq),

σz
q,�

= τz
q , σz

q,�
= τz

q (I − 2b†qbq),
(4)

whereτa
q is the Pauli operator acting on the effective spin at

positionq andb†(b ) are the canonical creation(annihilation)
operators for the hard-core bosons. In this notation the Hamil-
tonian itself becomes

H = −Jx

∑

q

(b†q + bq)τx
q+nx

(b†q+nx
+ bq+nx

)

− Jy

∑

q

iτz
q (b†q − bq)τy

q+ny
(b†q+ny

+ bq+ny
)

− Jz

∑

q

(I − 2b†qbq). (5)

In this representation the plaquette operators of the original
Hamiltonian are

W q = (I − 2Nq)(I − 2Nq+ny
)Qq (6)

whereNq = b†qbq andQq = τz
q τy

q+nx
τy
q+ny

τz
q+n. We can

generalise the expression (6) to include products of plaquette
operators. Of particular importance later, because of the con-
ventions used, will be the products arranged vertically on the

effective lattice. We have in this case

F qx,qy
≡

qy
∏

q′

y
=0

W qx,q′

y

= (I − 2Nqx,0)(I − 2Nqx,qy
)

qy
∏

q′

y
=0

Qqx,q′

y

(7)

and we see that only the bosons at the upper and lower left
corners of the plaquette product need to be taken into account.

The relation (6) allows one to write down an orthonormal
basis for the full honeycomb(brick-wall) system [9]. Explic-
itly we can write| {Qq}, {q}〉 where the quantum numbers
are the eigenvaluesQq of the operatorQq and the bosonic
position vectorsq. Any state with a given{q} is determined,
up to a phase, by the stabilizersQq|ψ〉 = ±|ψ〉, that reflect
the underlying vorticity and bosonic position vectors, through
the mapping (4). The state| {Qq}, {∅}〉 ∀Qq = 1 is unitarily
equivalent to the toric-code ground state in the square lattice
effective spin representation [1, 12] and from the perturbation
theory this state is known to be the leading contribution to the
actual ground state of the full hexagonal system [8, 10]. To
fully specify a state on a torus one must also specify two ad-
ditional quantum numbers associated with the homologically
non-trivial loop symmetries. In our case we choose these to be
the eigenvalueslx andly of the operatorsLx andLy described
above.

We now define a particular string operator using overlap-
ping products of theKα

ij terms of the original Hamiltonian.
The primary function of the string will be to break/fixz-
dimers at a particular locationq of the lattice. Our convention
will be to first apply a singleσx term to a black site which we
set to be the origin. The rest of the string is made by applying
first alternatingKz

ij andKx
jk until we reach a required length

and then apply alternatingKz
lm andKy

mn terms ending on the
black site atq, see FIG. 1. Explicitly we write

Sq ≡ σy
(qx,qy),�

σy
(qx,qy−1),�

σz
(qx,qy−1)�

(8)

...σy
(qx,1),�

σy
(qx,0),�

σz
(qx,0),�

σz
(qx,0)�

σx
(qx,0)�

...σx
(1,0)�

σx
(0,0)�

σz
(0,0),�

σz
(0,0),�

σx
(0,0),�

Using the representation of [7, 8, 9] we can decompose (8)
into the effective spin and bosonic subspaces, i.e.S =
Se ⊗ Sb. In this decomposition there are four different types
of structures to observe on the effective lattice: (1) the line
including the starting pointA up to, but not including, the
turning pointB, (2) the turning pointB = (qx, 0), (3) the ex-
clusive intervalBC, and (4) the end pointC = (qx, qy), see
FIG 2 and TABLE I.

The operatorSq squares to unity while different operators
Sq, Sq′ anti-commute with each other. This lead us to identify
the stringSq with the following sum of fermionic creation and
annihilation operators:Sq = c†q +cq = (b†q +bq)S

′

q whereS
′

q

can be determined from TABLE I. Individually our fermionic
canonical creation and annihilation operators are

c†q = b†qS
′

q, cq = bqS
′

q (9)
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FIG. 2: Bosonic and effective spin decomposition of the operator
string S.

S Se ⊗ Sb

[A,B) σx

�
σz

�
σz

�
σx

�
−τx ⊗ I − 2b†b

B σy

�
σz

�
σz

�
σx

�
−τy ⊗ I

(B,C) σy

�
σz

�
σz

�
σy

�
τx ⊗ I

C σy

�
τy ⊗ b† + b

TABLE I: The stringS as four unique segments. While bosons are
only created/destroyed at the endpointC of the string, the sites in the
[A, B) interval also have non-trivial bosonic dependence.

where the strings now insure that the operatorsc† andc obey
the canonical fermionic anti-commutator relations. It is im-
portant to note that, because of the identification of the sum
c†q + cq with the stringSq, that operatorsc†q andcq must both
create/annihilate vortices atq = (−1, 0) andq = (−1,−1) .
However, quadratic terms of fermionic operators will always
preserve the underlying vorticity. This has interesting conse-
quences later when we examine the system on a torus.

Similar to [1, 14], we now introduce the generic quadratic
Hamiltonian

H =
[

c†q cq

]

[

ξqq′ ∆qq′

∆†
qq′ −ξT

qq′

] [

cq′

c†q′

]

+ C (10)

If we invert (9) and substitute the relevant expressions into the
Hamiltonian (5) we get the form (10) with

ξqq′ = 2Jzδq,q′ + JxF q−ny
(δq,q′+nx

+ δq+nx,q′)

+ Jy(δq,q′+ny
+ δq+ny,q′)

∆qq′ = JxF q−ny
(δq,q′+nx

− δq+nx,q′)

+ Jy(δq,q′+ny
− δq+ny,q′) (11)

andC = −MJz whereM the number of effective spins and
F q is defined in (7). We restrict the Hilbert space to the
relavent vortex-configuration by replacingF q by the eigen-
valuesFq of that configuration. In the simplest case of the
vortex free sector we haveFq = 1 ∀q. This sector, be-
cause of the theorem by Lieb [25], is known to contain the
system ground state and can be solved exactly in the ther-
modynamic limit by moving to the momentum representation

with the Fourier transformcq = M−1/2
∑

cke
ik·q. After

substitution into (11) and anti-symmetrization we have

H =
∑

k

[

ξkc
†
kck +

1

2
(∆c†kc

†
−k + ∆∗c−kck)

]

+ C (12)

whereξk = εk − µ with εk = 2Jx cos(kx) + 2Jy cos(ky)
andµ = −2Jz. The gap function is∆k = αk + iβk with
αk = 0 andβk = 2Jx sin(kx) + 2Jy sin(ky). If the Hamil-
tonian is extended, as in Kitaev’s original analysis, to include
the single products of adjacentK-operators ( formula (46) of
[1]) one getsαk = 4κ(sin(kx) − sin(ky) − sin(kx − ky))
and the formEk is in exact agreement with the dispersion re-
lation derived there. The procedure also gives agreement with
the other fermionization techniques to analyse the extended
model [2, 13, 14, 16, 18]. We note in particular that the tech-
nique can be used to replicate the dispersion relations of [3]
where the p-wave pairing can be tuned to havekx + iky chiral
symmetry thus allowing a direct link with the work of Read
and Green [4] and subsequent analysis [26, 27, 28, 29], relat-
ing the Pfaffian Quantum Hall states, p-wave superconductors
and Ising topological model.

The Hamiltonian (12) is diagonalized by Bogoliubov trans-
formation γk = ukck − vkc

†
−k, whereuk and vk satisfy

|uk|2 + |vk|2 = 1. We haveH =
∑

Ek(γ†kγk − 1/2),
with Ek =

√

ξ2k + |∆k|2, uk =
√

1/2(1 + ξk/Ek), and
vk = i

√

1/2(1 − ξk/Ek)Θk with Θk = sgn(−Im(∆k)/ξk)
The ground state, annihilated by allγk, and of energy

Egs = − 1
2

∫

Ekdk, can by inspection be seen to be the BCS
type state

| gs〉 =
∏

k

(uk + vkc
†
kc

†
−k)| vac〉. (13)

This expression is similar to the one obtained in Ref. [2],
but we note that our fermionization procedure has been de-
signed such that the vacuum state is the toric-code ground
state| {Qq}, {∅}〉 defined on the effective lattice, while the

operatorsc†l are, by definition, the Fourier superpositions of
the states| {Qq}, {q}〉. Note that in the corner of theA phase
(Jz = 1, Jx, Jy → 0) we haveuk → 1 andvk → 0 and thus
the ground state of the full system| gs〉 → | {Qq}, {∅}〉 as ex-
pected. The expression (13) is, to the best of our knowledge,
the first closed form expression for this state that does not re-
quire additional spectral projection. It is also noteworthy be-
cause it combines two powerful wavefunction descriptors i.e.
Cooper pairing and the Stabilizer formalism.

The Hamiltonian (10) may be diagonalised for arbitrary
vortex configurations on a torus using the multimode Bogoli-
ubov transformationγi =

∑

l(uilcl − vilc
†
l ). The quasi-

particle excitation energyEl and the vectorsuil andvil are ob-
tained by solving the Bogoliubov-de-Gennes eigenvalue prob-
lem

[

ξ ∆

∆† −ξT

] [

u

v

]

= E

[

u

v

]

, (14)
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where theξ and∆ given in (11) are modified to include the
terms that connect both sides of the torus, i.e. the terms that
connect the sites(0, qy) to (Nx, qy) and(qx, 0) to (qx, Ny).
The values of these terms are determined from the arrange-
ment of vortices and the quantum numbers of the two inde-
pendent homologically non-trivial loop symmetrieslx andly.

To construct the actual eigenstates using the multimodeγi

it is easiest to use the Hartree-Fock-Bogoliubov (HFB) pro-
jection | gs〉 =

∏

i γi| vac〉, where the vacuum state is the ap-
propriate toric-code state on the full hexagonal lattice. This
state can be brought into BCS form (13) by making use of
the Bloch-Messiah theorem [30]. For the vortex free sec-
tor, with the important exception of the fully periodic state
with (lx, ly) = (−1,−1) in the B-phase, one observes that
the eigenstate energy can be simply calculated as a discrete
sum over the energy functionEk calculated above i.e.Egs =
− 1

2

∑

kx,ky
Ek, where thekα run overθα + 2π nα

Nα

with the
integernα running from0 toNα−1, and the boundary condi-
tions(lx, ly) are encoded asθα = lα+1

2
π

Nα

. As the fermions
do not preseve vorticity, valid excitation energies above the
ground state are given by adding pairs of energiesEk toEgs.

For the fully periodic vortex free sector there is no need
for the Bloch-Messiah reduction although, similarly to [4]
(see also note [31]), the BCS state (13) is not valid in the
B phase. However, with the fermions we defined above, the
problematic point ink-space occurs atk = (π, π) rather than
k = (0, 0). At this point the BCS state (13) vanishes because,
uk = 0, vk = −i andc†kc

†
−k = 0. However, unlike Read

and Green, we cannot propose the singlesγ†π,π| gs〉 as an al-
ternative because the Bogoliubov fermions do not preserve the
plaquette gauge symmetries. Furthermore we observe numeri-
cally that the double excitations have too great an energy. This
puzzle can be understood if one examines the state

|ψπ,π〉 =
∏

k 6=(π,π)

(uk + vkc
†
kc

†
−k)| {Qq, lx, ly}, {∅}〉 (15)

with (lx, ly) = (−1,−1) and Qq = 1 ∀q. The state
(15) is clearly from the vortex-free sector, has even fermion
parity, and is an eigenstate of the Hamiltonian with energy
Egs + Eπ,π. By inspection, it is not difficult to see that the
states|ψk〉 = γπ,πγ

†
k|ψπ,π〉 are also vortex-free eigenstates

of the system but with energyEgs + Ek. It is therefore nat-
ural to assume that the ground state of this sector is actually
the state|ψk〉 such that the discretizedEk is a minimum. As
an aside, we should point out that there is no reason why the
construction here can not be applied in ‘real’ p-wave super-

conductors, where fermionic electrons and vortices are not
dependent in the same way. While this result indicates that
the odd fermion single introduced by Read and Green must
be degenerate with the even fermion BCS product introduced
above, it does not conflict with the general assertion that, for
a gapped system, the lowest energy odd fermion state is not
part of the groundstate manifold.

This work has been supported by Science Founda-
tion Ireland through the President of Ireland Research
Award 05/Y12/1680 and the Principal Investigator Award
08/IN.1/I1961.
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