36,941 research outputs found

    Why Nature has made a choice of one time and three space coordinates?

    Get PDF
    We propose a possible answer to one of the most exciting open questions in physics and cosmology, that is the question why we seem to experience four- dimensional space-time with three ordinary and one time dimensions. We have known for more than 70 years that (elementary) particles have spin degrees of freedom, we also know that besides spin they also have charge degrees of freedom, both degrees of freedom in addition to the position and momentum degrees of freedom. We may call these ''internal degrees of freedom '' the ''internal space'' and we can think of all the different particles, like quarks and leptons, as being different internal states of the same particle. The question then naturally arises: Is the choice of the Minkowski metric and the four-dimensional space-time influenced by the ''internal space''? Making assumptions (such as particles being in first approximation massless) about the equations of motion, we argue for restrictions on the number of space and time dimensions. (Actually the Standard model predicts and experiments confirm that elementary particles are massless until interactions switch on masses.) Accepting our explanation of the space-time signature and the number of dimensions would be a point supporting (further) the importance of the ''internal space''.Comment: 13 pages, LaTe

    Optimal purification of a generic n-qudit state

    Get PDF
    We propose a quantum algorithm for the purification of a generic mixed state ρ\rho of a nn-qudit system by using an ancillary nn-qudit system. The algorithm is optimal in that (i) the number of ancillary qudits cannot be reduced, (ii) the number of parameters which determine the purification state Ψ>|\Psi> exactly equals the number of degrees of freedom of ρ\rho, and (iii) Ψ>|\Psi> is easily determined from the density matrix ρ\rho. Moreover, we introduce a quantum circuit in which the quantum gates are unitary transformations acting on a 2n2n-qudit system. These transformations are determined by parameters that can be tuned to generate, once the ancillary qudits are disregarded, any given mixed nn-qudit state.Comment: 8 pages, 9 figures, remarks adde

    Correlations in optically-controlled quantum emitters

    Full text link
    We address the problem of optically controlling and quantifying the dissipative dynamics of quantum and classical correlations in a set-up of individual quantum emitters under external laser excitation. We show that both types of correlations, the former measured by the quantum discord, are present in the system's evolution even though the emitters may exhibit an early stage disentanglement. In the absence of external laser pumping,we demonstrate analytically, for a set of suitable initial states, that there is an entropy bound for which quantum discord and entanglement of the emitters are always greater than classical correlations, thus disproving an early conjecture that classical correlations are greater than quantum correlations. Furthermore, we show that quantum correlations can also be greater than classical correlations when the system is driven by a laser field. For scenarios where the emitters' quantum correlations are below their classical counterparts, an optimization of the evolution of the quantum correlations can be carried out by appropriately tailoring the amplitude of the laser field and the emitters' dipole-dipole interaction. We stress the importance of using the entanglement of formation, rather than the concurrence, as the entanglement measure, since the latter can grow beyond the total correlations and thus give incorrect results on the actual system's degree of entanglement.Comment: 11 pages, 10 figures, this version contains minor modifications; to appear in Phys. Rev.

    Operator-Schmidt decompositions and the Fourier transform, with applications to the operator-Schmidt numbers of unitaries

    Full text link
    The operator-Schmidt decomposition is useful in quantum information theory for quantifying the nonlocality of bipartite unitary operations. We construct a family of unitary operators on C^n tensor C^n whose operator-Schmidt decompositions are computed using the discrete Fourier transform. As a corollary, we produce unitaries on C^3 tensor C^3 with operator-Schmidt number S for every S in {1,...,9}. This corollary was unexpected, since it contradicted reasonable conjectures of Nielsen et al [Phys. Rev. A 67 (2003) 052301] based on intuition from a striking result in the two-qubit case. By the results of Dur, Vidal, and Cirac [Phys. Rev. Lett. 89 (2002) 057901 quant-ph/0112124], who also considered the two-qubit case, our result implies that there are nine equivalence classes of unitaries on C^3 tensor C^3 which are probabilistically interconvertible by (stochastic) local operations and classical communication. As another corollary, a prescription is produced for constructing maximally-entangled operators from biunimodular functions. Reversing tact, we state a generalized operator-Schmidt decomposition of the quantum Fourier transform considered as an operator C^M_1 tensor C^M_2 --> C^N_1 tensor C^N_2, with M_1 x M_2 = N_1 x N_2. This decomposition shows (by Nielsen's bound) that the communication cost of the QFT remains maximal when a net transfer of qudits is permitted. In an appendix, a canonical procedure is given for removing basis-dependence for results and proofs depending on the "magic basis" introduced in [S. Hill and W. Wootters, "Entanglement of a pair of quantum bits," Phys Rev. Lett 78 (1997) 5022-5025, quant-ph/9703041 (and quant-ph/9709029)].Comment: More formal version of my talk at the Simons Conference on Quantum and Reversible Computation at Stony Brook May 31, 2003. The talk slides and audio are available at http://www.physics.sunysb.edu/itp/conf/simons-qcomputation.html. Fixed typos and minor cosmetic

    Gravi-Weak Unification and the Black-Hole-Hedgehog's Solution with Magnetic Field Contribution

    Full text link
    In the present paper, we investigated the gravitational black-hole-hedgehog's solution with magnetic field contribution in the framework of the f(R)--gravity described by the Gravi-Weak unification model. Assuming the Multiple Point Principle (MPP), we considered the existence of the two degenerate vacua of the Universe: the first Electroweak (EW) vacuum with v1246v_1 \approx 246 GeV ("true vacuum"), and the second Planck scale ("false vacuum") with v21018v_2 \sim 10^{18} GeV. In these vacua, we investigated different topological defects. The main aim of this paper is an investigation of the black-hole-hedgehog configurations as defects of the "false vacuum". We have obtained the solution which corresponds to a global monopole, that has been "swallowed" by the black-hole with core mass MBH3.65×1018GeVM_{BH}\approx 3.65\times 10^{18}\,\, {\rm{GeV}} and radius δ61021GeV1.\delta \approx 6\cdot 10^{-21} {\rm{GeV}}^{-1}. We investigated the metric in the vicinity of the black-hole-hedgehog and estimated its horizon radius: rh1.14δr_h\approx 1.14 \delta. We have considered the phase transition from the "false vacuum" to the "true vacuum" and confirmed the stability of the EW--vacuum.Comment: 22 pages. arXiv admin note: text overlap with arXiv:1703.05594, arXiv:1801.06979, arXiv:1605.01169; text overlap with arXiv:1002.4275 by other author

    Quantum state engineering, purification, and number resolved photon detection with high finesse optical cavities

    Full text link
    We propose and analyze a multi-functional setup consisting of high finesse optical cavities, beam splitters, and phase shifters. The basic scheme projects arbitrary photonic two-mode input states onto the subspace spanned by the product of Fock states |n>|n> with n=0,1,2,.... This protocol does not only provide the possibility to conditionally generate highly entangled photon number states as resource for quantum information protocols but also allows one to test and hence purify this type of quantum states in a communication scenario, which is of great practical importance. The scheme is especially attractive as a generalization to many modes allows for distribution and purification of entanglement in networks. In an alternative working mode, the setup allows of quantum non demolition number resolved photodetection in the optical domain.Comment: 14 pages, 10 figure

    Decoherence-free quantum-information processing using dipole-coupled qubits

    Get PDF
    We propose a quantum-information processor that consists of decoherence-free logical qubits encoded into arrays of dipole-coupled qubits. High-fidelity single-qubit operations are performed deterministically within a decoherence-free subsystem without leakage via global addressing of bichromatic laser fields. Two-qubit operations are realized locally with four physical qubits, and between separated logical qubits using linear optics. We show how to prepare cluster states using this method. We include all non-nearest-neighbor effects in our calculations, and we assume the qubits are not located in the Dicke limit. Although our proposal is general to any system of dipole-coupled qubits, throughout the paper we use nitrogen-vacancy (NV) centers in diamond as an experimental context for our theoretical results.Comment: 7 pages, 5 figure

    Unstable Modes in Three-Dimensional SU(2) Gauge Theory

    Full text link
    We investigate SU(2) gauge theory in a constant chromomagnetic field in three dimensions both in the continuum and on the lattice. Using a variational method to stabilize the unstable modes, we evaluate the vacuum energy density in the one-loop approximation. We compare our theoretical results with the outcomes of the numerical simulations.Comment: 24 pages, REVTEX 3.0, 3 Postscript figures included. (the whole postscript file (text+figures) is available on request from [email protected]
    corecore