30,583 research outputs found

    Multimode analysis of the light emitted from a pulsed optical parametric oscillator

    Full text link
    We present a multimode treatment of the optical parametric oscillator, which is valid for both pulsed and continuous-wave pump fields. The two-time correlation functions of the output field are derived, and we apply the theory to analyze a scheme for heralded production of non-classical field states that may be subsequently stored in an atomic quantum memory.Comment: 11 pages, 6 figure

    High purity bright single photon source

    Full text link
    Using cavity-enhanced non-degenerate parametric downconversion, we have built a frequency tunable source of heralded single photons with a narrow bandwidth of 8 MHz, making it compatible with atomic quantum memories. The photon state is 70% pure single photon as characterized by a tomographic measurement and reconstruction of the quantum state, revealing a clearly negative Wigner function. Furthermore, it has a spectral brightness of ~1,500 photons/s per MHz bandwidth, making it one of the brightest single photon sources available. We also investigate the correlation function of the down-converted fields using a combination of two very distinct detection methods; photon counting and homodyne measurement.Comment: 9 pages, 4 figures; minor changes, added referenc

    Time gating of heralded single photons for atomic memories

    Full text link
    We demonstrate a method for time gating the standard heralded continuous- wave (cw) spontaneous parametric down-converted (SPDC) single photon source by using pulsed pumping of the optical parametric oscillator (OPO) below threshold. The narrow bandwidth, high purity, high spectral brightness and the pseudo-deterministic character make the source highly suitable for light-atom interfaces with atomic memories.Comment: Accepted for publication in Optics Letter

    Directly estimating non-classicality

    Full text link
    We establish a method of directly measuring and estimating non-classicality - operationally defined in terms of the distinguishability of a given state from one with a positive Wigner function. It allows to certify non-classicality, based on possibly much fewer measurement settings than necessary for obtaining complete tomographic knowledge, and is at the same time equipped with a full certificate. We find that even from measuring two conjugate variables alone, one may infer the non-classicality of quantum mechanical modes. This method also provides a practical tool to eventually certify such features in mechanical degrees of freedom in opto-mechanics. The proof of the result is based on Bochner's theorem characterizing classical and quantum characteristic functions and on semi-definite programming. In this joint theoretical-experimental work we present data from experimental optical Fock state preparation, demonstrating the functioning of the approach.Comment: 4+1 pages, 2 figures, minor change

    Chiral Symmetry Breaking on the Lattice: a Study of the Strongly Coupled Lattice Schwinger Model

    Get PDF
    We revisit the strong coupling limit of the Schwinger model on the lattice using staggered fermions and the hamiltonian approach to lattice gauge theories. Although staggered fermions have no continuous chiral symmetry, they posses a discrete axial invari ance which forbids fermion mass and which must be broken in order for the lattice Schwinger model to exhibit the features of the spectrum of the continuum theory. We show that this discrete symmetry is indeed broken spontaneously in the strong coupling li mit. Expanding around a gauge invariant ground state and carefully considering the normal ordering of the charge operator, we derive an improved strong coupling expansion and compute the masses of the low lying bosonic excitations as well as the chiral co ndensate of the model. We find very good agreement between our lattice calculations and known continuum values for these quantities already in the fourth order of strong coupling perturbation theory. We also find the exact ground state of the antiferromag netic Ising spin chain with long range Coulomb interaction, which determines the nature of the ground state in the strong coupling limit.Comment: 24 pages, Latex, no figure

    The B_{s0} meson and the B_{s0}B K coupling from QCD sum rules

    Full text link
    We evaluate the mass of the Bs0B_{s0} scalar meson and the coupling constant in the Bs0BKB_{s0} B K vertex in the framework of QCD sum rules. We consider the Bs0B_{s0} as a tetraquark state to evaluate its mass. We get m_{B_s0}=(6.04\pm 0.08) \GeV, which is bigger than predictions supposing it as a bsˉb\bar{s} state or a BKˉB\bar{K} bound state with JP=0+J^{P}=0^+. To evaluate the gBs0BKg_{B_{s0}B K} coupling we use the three point correlation functions of the vertex, considering Bs0 B_{s0} as a normal bsˉb\bar{s} state. The obtained coupling constant is: g_{B_{s0} B K} =(16.3 \pm 3.2) \GeV. This number is in agreement with light-cone QCD sum rules calculation. We have also compared the decay width of the \BS\to BK process considering the \BS to be a bsˉb\bar{s} state and a BKBK molecular state. The width obtained for the BKBK molecular state is twice as big as the width obtained for the bsˉb\bar{s} state. Therefore, we conclude that with the knowledge of the mass and the decay width of the \BS meson, one can discriminate between the different theoretical proposals for its structure.Comment: revised version to appear in Phys. Rev.

    The horizon-entropy increase law for causal and quasi-local horizons and conformal field redefinitions

    Full text link
    We explicitly prove the horizon-entropy increase law for both causal and quasi-locally defined horizons in scalar-tensor and f(R)f(R) gravity theories. Contrary to causal event horizons, future outer trapping horizons are not conformally invariant and we provide a modification of trapping horizons to complete the proof, using the idea of generalised entropy. This modification means they are no longer foliated by marginally outer trapped surfaces but fixes the location of the horizon under a conformal transformation. We also discuss the behaviour of horizons in "veiled" general relativity and show, using this new definition, how to locate cosmological horizons in flat Minkowski space with varying units, which is physically identified with a spatially flat FLRW spacetime.Comment: 23 page

    Decoherence window and electron-nuclear cross-relaxation in the molecular magnet V 15

    Full text link
    Rabi oscillations in the V_15 Single Molecule Magnet (SMM) embedded in the surfactant DODA have been studied at different microwave powers. An intense damping peak is observed when the Rabi frequency Omega_R falls in the vicinity of the Larmor frequency of protons w_N, while the damping time t_R of oscillations reaches values 10 times shorter than the phase coherence time t_2 measured at the same temperature. The experiments are interpreted by the N-spin model showing that t_R is directly associated with the decoherence via electronic/nuclear spin cross-relaxation in the rotating reference frame. It is shown that this decoherence is accompanied with energy dissipation in the range of the Rabi frequencies w_N - sigma_e < Omega_R < w_N, where sigma_e is the mean super-hyperfine field (in frequency units) induced by protons at SMMs. Weaker damping without dissipation takes place outside this dissipation window. Simple local field estimations suggest that this rapid cross-relaxation in resonant microwave field observed for the first time in SMMV_15 should take place in other SMMs like Fe_8 and Mn_12 containing protons, too
    • …
    corecore