62 research outputs found
Violation of Bell inequality by photon scattering on a two-level emitter
Entanglement, the non-local correlations present in multipartite quantum
systems, is a curious feature of quantum mechanics and the fuel of quantum
technology. It is therefore a major priority to develop energy-conserving and
simple methods for generating high-fidelity entangled states. In the case of
light, entanglement can be realized by interactions with matter, although the
required nonlinear interaction is typically weak, thereby limiting its
applicability. Here, we show how a single two-level emitter deterministically
coupled to light in a nanophotonic waveguide is used to realize genuine
photonic quantum entanglement for excitation at the single photon level. By
virtue of the efficient optical coupling, two-photon interactions are strongly
mediated by the emitter realizing a giant nonlinearity that leads to
entanglement. We experimentally generate and verify energy-time entanglement by
violating a Bell inequality (Clauder-Horne-Shimony-Holt Bell parameter of
) in an interferometric measurement of the two-photon scattering
response. As an attractive feature of this approach, the two-level emitter acts
as a passive scatterer initially prepared in the ground state, i.e., no
advanced spin control is required. This experiment is a fundamental advancement
that may pave a new route for ultra-low energy-consuming synthesis of photonic
entangled states for quantum simulators or metrology.Comment: the manuscript of 6 pages with 3 figures and a Supplementary Material
file of 12 pages with 7 figure
Pseudorapidity distributions of charged particles from Au+Au collisions at the maximum RHIC energy, Sqrt(s_NN) = 200 GeV
We present charged particle densities as a function of pseudorapidity and
collision centrality for the 197Au+197Au reaction at Sqrt{s_NN}=200 GeV. For
the 5% most central events we obtain dN_ch/deta(eta=0) = 625 +/- 55 and
N_ch(-4.7<= eta <= 4.7) = 4630+-370, i.e. 14% and 21% increases, respectively,
relative to Sqrt{s_NN}=130 GeV collisions. Charged-particle production per pair
of participant nucleons is found to increase from peripheral to central
collisions around mid-rapidity. These results constrain current models of
particle production at the highest RHIC energy.Comment: 4 pages, 5 figures; fixed fig. 5 caption; revised text and figures to
show corrected calculation of and ; final version accepted for
publicatio
Altimetry for the future: Building on 25 years of progress
In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers
We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87° in diameter and centered on 20h10m54.71s+33°33′25.29′′, and the other (B) is 7.45° in diameter and centered on 8h35m20.61s-46°49′25.151′′. We explored the frequency range of 50-1500 Hz and frequency derivative from 0 to -5×10-9 Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h0 of 6.3×10-25, while at the high end of our frequency range we achieve a worst-case upper limit of 3.4×10-24 for all polarizations and sky locations. © 2016 American Physical Society
RNA sequencing: from tag-based profiling to resolving complete transcript structure
Technological advances in the sequencing field support in-depth characterization of the transcriptome. Here, we review genome-wide RNA sequencing methods used to investigate specific aspects of gene expression and its regulation, from transcription to RNA processing and translation. We discuss tag-based methods for studying transcription, alternative initiation and polyadenylation events, shotgun methods for detection of alternative splicing, full-length RNA sequencing for the determination of complete transcript structures, and targeted methods for studying the process of transcription and translation. With the ensemble of technologies available, it is now possible to obtain a comprehensive view on transcriptome complexity and the regulation of transcript diversity
- …