4,264 research outputs found
Hybrid quantum information processing
The development of quantum information processing has traditionally followed
two separate and not immediately connected lines of study. The main line has
focused on the implementation of quantum bit (qubit) based protocols whereas
the other line has been devoted to implementations based on high-dimensional
Gaussian states (such as coherent and squeezed states). The separation has been
driven by the experimental difficulty in interconnecting the standard
technologies of the two lines. However, in recent years, there has been a
significant experimental progress in refining and connecting the technologies
of the two fields which has resulted in the development and experimental
realization of numerous new hybrid protocols. In this Review, we summarize
these recent efforts on hybridizing the two types of schemes based on discrete
and continuous variables.Comment: 13 pages, 6 figure
Location-Quality-aware Policy Optimisation for Relay Selection in Mobile Networks
Relaying can improve the coverage and performance of wireless access
networks. In presence of a localisation system at the mobile nodes, the use of
such location estimates for relay node selection can be advantageous as such
information can be collected by access points in linear effort with respect to
number of mobile nodes (while the number of links grows quadratically).
However, the localisation error and the chosen update rate of location
information in conjunction with the mobility model affect the performance of
such location-based relay schemes; these parameters also need to be taken into
account in the design of optimal policies. This paper develops a Markov model
that can capture the joint impact of localisation errors and inaccuracies of
location information due to forwarding delays and mobility; the Markov model is
used to develop algorithms to determine optimal location-based relay policies
that take the aforementioned factors into account. The model is subsequently
used to analyse the impact of deployment parameter choices on the performance
of location-based relaying in WLAN scenarios with free-space propagation
conditions and in an measurement-based indoor office scenario.Comment: Accepted for publication in ACM/Springer Wireless Network
Quantum gate characterization in an extended Hilbert space
We describe an approach for characterizing the process of quantum gates using
quantum process tomography, by first modeling them in an extended Hilbert
space, which includes non-qubit degrees of freedom. To prevent unphysical
processes from being predicted, present quantum process tomography procedures
incorporate mathematical constraints, which make no assumptions as to the
actual physical nature of the system being described. By contrast, the
procedure presented here ensures physicality by placing physical constraints on
the nature of quantum processes. This allows quantum process tomography to be
performed using a smaller experimental data set, and produces parameters with a
direct physical interpretation. The approach is demonstrated by example of
mode-matching in an all-optical controlled-NOT gate. The techniques described
are non-specific and could be applied to other optical circuits or quantum
computing architectures.Comment: 4 pages, 2 figures, REVTeX (published version
Geometric quantum gate for trapped ions based on optical dipole forces induced by Gaussian laser beams
We present an implementation of quantum logic gates via internal state
dependent displacements of ions in a linear Paul trap caused by optical dipole
forces. Based on a general quantum analysis of the system dynamics we consider
specific implementations with alkaline earth ions. For experimentally realistic
parameters gate infidelities as low as can be obtained.Comment: 10 pages, 4 figure
Entanglement properties of optical coherent states under amplitude damping
Through concurrence, we characterize the entanglement properties of optical
coherent-state qubits subject to an amplitude damping channel. We investigate
the distillation capabilities of known error correcting codes and obtain upper
bounds on the entanglement depending on the non-orthogonality of the coherent
states and the channel damping parameter. This work provides a first, full
quantitative analysis of these photon-loss codes which are naturally
reminiscent of the standard qubit codes against Pauli errors.Comment: 7 pages, 6 figures. Revised version with small corrections; main
results remain unaltere
- …