4,264 research outputs found

    Low-Reynolds Number Effects in Backward-Facing Step Flow using Large Eddy Simulations

    Get PDF

    Hybrid quantum information processing

    Get PDF
    The development of quantum information processing has traditionally followed two separate and not immediately connected lines of study. The main line has focused on the implementation of quantum bit (qubit) based protocols whereas the other line has been devoted to implementations based on high-dimensional Gaussian states (such as coherent and squeezed states). The separation has been driven by the experimental difficulty in interconnecting the standard technologies of the two lines. However, in recent years, there has been a significant experimental progress in refining and connecting the technologies of the two fields which has resulted in the development and experimental realization of numerous new hybrid protocols. In this Review, we summarize these recent efforts on hybridizing the two types of schemes based on discrete and continuous variables.Comment: 13 pages, 6 figure

    Location-Quality-aware Policy Optimisation for Relay Selection in Mobile Networks

    Get PDF
    Relaying can improve the coverage and performance of wireless access networks. In presence of a localisation system at the mobile nodes, the use of such location estimates for relay node selection can be advantageous as such information can be collected by access points in linear effort with respect to number of mobile nodes (while the number of links grows quadratically). However, the localisation error and the chosen update rate of location information in conjunction with the mobility model affect the performance of such location-based relay schemes; these parameters also need to be taken into account in the design of optimal policies. This paper develops a Markov model that can capture the joint impact of localisation errors and inaccuracies of location information due to forwarding delays and mobility; the Markov model is used to develop algorithms to determine optimal location-based relay policies that take the aforementioned factors into account. The model is subsequently used to analyse the impact of deployment parameter choices on the performance of location-based relaying in WLAN scenarios with free-space propagation conditions and in an measurement-based indoor office scenario.Comment: Accepted for publication in ACM/Springer Wireless Network

    Quantum gate characterization in an extended Hilbert space

    Get PDF
    We describe an approach for characterizing the process of quantum gates using quantum process tomography, by first modeling them in an extended Hilbert space, which includes non-qubit degrees of freedom. To prevent unphysical processes from being predicted, present quantum process tomography procedures incorporate mathematical constraints, which make no assumptions as to the actual physical nature of the system being described. By contrast, the procedure presented here ensures physicality by placing physical constraints on the nature of quantum processes. This allows quantum process tomography to be performed using a smaller experimental data set, and produces parameters with a direct physical interpretation. The approach is demonstrated by example of mode-matching in an all-optical controlled-NOT gate. The techniques described are non-specific and could be applied to other optical circuits or quantum computing architectures.Comment: 4 pages, 2 figures, REVTeX (published version

    Geometric quantum gate for trapped ions based on optical dipole forces induced by Gaussian laser beams

    Full text link
    We present an implementation of quantum logic gates via internal state dependent displacements of ions in a linear Paul trap caused by optical dipole forces. Based on a general quantum analysis of the system dynamics we consider specific implementations with alkaline earth ions. For experimentally realistic parameters gate infidelities as low as 10410^{-4} can be obtained.Comment: 10 pages, 4 figure

    Entanglement properties of optical coherent states under amplitude damping

    Get PDF
    Through concurrence, we characterize the entanglement properties of optical coherent-state qubits subject to an amplitude damping channel. We investigate the distillation capabilities of known error correcting codes and obtain upper bounds on the entanglement depending on the non-orthogonality of the coherent states and the channel damping parameter. This work provides a first, full quantitative analysis of these photon-loss codes which are naturally reminiscent of the standard qubit codes against Pauli errors.Comment: 7 pages, 6 figures. Revised version with small corrections; main results remain unaltere
    corecore