24,326 research outputs found

    Entangled spin clusters: some special features

    Get PDF
    In this paper, we study three specific aspects of entanglement in small spin clusters. We first study the effect of inhomogeneous exchange coupling strength on the entanglement properties of the S=1/2 antiferromagnetic linear chain tetramer compound NaCuAsO_{4}. The entanglement gap temperature, T_{E}, is found to have a non-monotonic dependence on the value of α\alpha, the exchange coupling inhomogeneity parameter. We next determine the variation of T_{E} as a function of S for a spin dimer, a trimer and a tetrahedron. The temperature T_{E} is found to increase as a function of S, but the scaled entanglement gap temperature t_{E} goes to zero as S becomes large. Lastly, we study a spin-1 dimer compound to illustrate the quantum complementarity relation. We show that in the experimentally realizable parameter region, magnetization and entanglement plateaus appear simultaneously at low temperatures as a function of the magnetic field. Also, the sharp increase in one quantity as a function of the magnetic field is accompanied by a sharp decrease in the other so that the quantum complementarity relation is not violated.Comment: 17 pages, 6 figures. Accepted in Phys. Rev.

    Constructing entanglement witnesses for infinite-dimensional systems

    Full text link
    It is shown that, every entangled state in an infinite-dimensional composite system has a simple entanglement witness of the form αI+T\alpha I+T with α\alpha a nonnegative number and TT a finite rank self-adjoint operator. We also provide two methods of constructing entanglement witness and apply them to obtain some entangled states that cannot be detected by the PPT criterion and the realignment criterion.Comment: 15 page

    Ensemble Quantum Computation with atoms in periodic potentials

    Full text link
    We show how to perform universal quantum computation with atoms confined in optical lattices which works both in the presence of defects and without individual addressing. The method is based on using the defects in the lattice, wherever they are, both to ``mark'' different copies on which ensemble quantum computation is carried out and to define pointer atoms which perform the quantum gates. We also show how to overcome the problem of scalability on this system

    The entanglement of few-particle systems when using the local-density approximation

    Full text link
    In this chapter we discuss methods to calculate the entanglement of a system using density-functional theory. We firstly introduce density-functional theory and the local-density approximation (LDA). We then discuss the concept of the `interacting LDA system'. This is characterised by an interacting many-body Hamiltonian which reproduces, uniquely and exactly, the ground state density obtained from the single-particle Kohn-Sham equations of density-functional theory when the local-density approximation is used. We motivate why this idea can be useful for appraising the local-density approximation in many-body physics particularly with regards to entanglement and related quantum information applications. Using an iterative scheme, we find the Hamiltonian characterising the interacting LDA system in relation to the test systems of Hooke's atom and helium-like atoms. The interacting LDA system ground state wavefunction is then used to calculate the spatial entanglement and the results are compared and contrasted with the exact entanglement for the two test systems. For Hooke's atom we also compare the entanglement to our previous estimates of an LDA entanglement. These were obtained using a combination of evolutionary algorithm and gradient descent, and using an LDA-based perturbative approach. We finally discuss if the position-space information entropy of the density---which can be obtained directly from the system density and hence easily from density-functional theory methods---can be considered as a proxy measure for the spatial entanglement for the test systems.Comment: 12 pages and 5 figures

    Lower bounds on concurrence and separability conditions

    Get PDF
    We obtain analytical lower bounds on the concurrence of bipartite quantum systems in arbitrary dimensions related to the violation of separability conditions based on local uncertainty relations and on the Bloch representation of density matrices. We also illustrate how these results complement and improve those recently derived [K. Chen, S. Albeverio, and S.-M. Fei, Phys. Rev. Lett. 95, 040504 (2005)] by considering the Peres-Horodecki and the computable cross norm or realignment criteria.Comment: 5 pages, 1 figure; minor changes, references added; final version: minor correction in proof of lemma 1, scope of theorem 2 clarified, to appear in PRA; mistake in proof of lemma 1 of published version corrected, results unchange

    Distance measures to compare real and ideal quantum processes

    Get PDF
    With growing success in experimental implementations it is critical to identify a "gold standard" for quantum information processing, a single measure of distance that can be used to compare and contrast different experiments. We enumerate a set of criteria such a distance measure must satisfy to be both experimentally and theoretically meaningful. We then assess a wide range of possible measures against these criteria, before making a recommendation as to the best measures to use in characterizing quantum information processing.Comment: 15 pages; this version in line with published versio

    Optimal copying of entangled two-qubit states

    Full text link
    We investigate the problem of copying pure two-qubit states of a given degree of entanglement in an optimal way. Completely positive covariant quantum operations are constructed which maximize the fidelity of the output states with respect to two separable copies. These optimal copying processes hint at the intricate relationship between fundamental laws of quantum theory and entanglement.Comment: 13 pages, 7 figure

    Ancilla-assisted sequential approximation of nonlocal unitary operations

    Get PDF
    We consider the recently proposed "no-go" theorem of Lamata et al [Phys. Rev. Lett. 101, 180506 (2008)] on the impossibility of sequential implementation of global unitary operations with the aid of an itinerant ancillary system and view the claim within the language of Kraus representation. By virtue of an extremely useful tool for analyzing entanglement properties of quantum operations, namely, operator-Schmidt decomposition, we provide alternative proof to the "no-go" theorem and also study the role of initial correlations between the qubits and ancilla in sequential preparation of unitary entanglers. Despite the negative response from the "no-go" theorem, we demonstrate explicitly how the matrix-product operator(MPO) formalism provides a flexible structure to develop protocols for sequential implementation of such entanglers with an optimal fidelity. The proposed numerical technique, that we call variational matrix-product operator (VMPO), offers a computationally efficient tool for characterizing the "globalness" and entangling capabilities of nonlocal unitary operations.Comment: Slightly improved version as published in Phys. Rev.

    Optimizing local protocols implementing nonlocal quantum gates

    Full text link
    We present a method of optimizing recently designed protocols for implementing an arbitrary nonlocal unitary gate acting on a bipartite system. These protocols use only local operations and classical communication with the assistance of entanglement, and are deterministic while also being "one-shot", in that they use only one copy of an entangled resource state. The optimization is in the sense of minimizing the amount of entanglement used, and it is often the case that less entanglement is needed than with an alternative protocol using two-way teleportation.Comment: 11 pages, 1 figure. This is a companion paper to arXiv:1001.546

    Completely positive covariant two-qubit quantum processes and optimal quantum NOT operations for entangled qubit pairs

    Full text link
    The structure of all completely positive quantum operations is investigated which transform pure two-qubit input states of a given degree of entanglement in a covariant way. Special cases thereof are quantum NOT operations which transform entangled pure two-qubit input states of a given degree of entanglement into orthogonal states in an optimal way. Based on our general analysis all covariant optimal two-qubit quantum NOT operations are determined. In particular, it is demonstrated that only in the case of maximally entangled input states these quantum NOT operations can be performed perfectly.Comment: 14 pages, 2 figure
    corecore