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Entangled spin 
lusters : some spe
ial featuresAmit Tribedi and Indrani Bose1st February 2008Department of Physi
sBose Institute93/1, A
harya Prafulla Chandra RoadKolkata - 700 009, IndiaAbstra
tIn this paper, we study three spe
i�
 aspe
ts of entanglement in small spin 
lus-ters. We �rst study the e�e
t of inhomogeneous ex
hange 
oupling strengths on theentanglement properties of the S=1
2 antiferromagneti
 linear 
hain tetramer 
om-pound NaCuAsO4. The entanglement gap temperature, TE , is found to have anon-monotoni
 dependen
e on the value of α, the ex
hange 
oupling inhomogeneityparameter. We next determine the variation of TE as a fun
tion of S for a spin dimer,a trimer and a tetrahedron. The temperature TE is found to in
rease as a fun
tion of

S but the s
aled entanglement gap temperature tE goes to zero as S be
omes large.Lastly, we study a spin-1 dimer 
ompound to illustrate the quantum 
omplementarityrelation. We show that in the experimentally realizable parameter region, magneti-zation and entanglement plateaus appear simultaneously at low temperatures as afun
tion of the magneti
 �eld. Also, the sharp in
rease in one quantity as a fun
tionof the magneti
 �eld is a

ompanied by a sharp de
rease in the other so that thequantum 
omplementarity relation is not violated.I. INTRODUCTIONEntanglement is a key feature of quantum me
hani
al systems and gives rise to non-lo
al
orrelations over and above those expe
ted from 
lassi
al 
onsiderations [1℄. It 
an beof di�erent types : bipartite, multipartite, zero-temperature, �nite-temperature et
. forwhi
h suitable measures are available in 
ertain 
ases [2, 3, 4, 5, 6, 7, 8℄. In the pastfew years, quantum spin systems have been extensively studied to gain knowledge on thedi�erent aspe
ts of entanglement. The spins in su
h systems intera
t via the ex
hangeintera
tion and also with an external �eld, if any. Several studies show that the amount1
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of entanglement 
an be 
hanged by varying the temperature T and/or the magnitude ofthe external �eld [3, 4, 9℄. In the 
ase of entangled thermal states, one 
an de�ne a 
riti
altemperature below whi
h entanglement is present in the system and above whi
h entangle-ment vanishes, i.e., the system be
omes separable. Dete
tion of entanglement 
an be madewith the help of an entanglement witness (EW) whi
h is an observable the expe
tationvalue of whi
h is positive in separable and negative in entangled states [10, 11, 12℄. Ther-modynami
 observables like internal energy, magnetization and sus
eptibility have beenproposed as EWs [12, 13, 14℄. There is now experimental eviden
e that entanglement 
ana�e
t the ma
ros
opi
 properties of solids like spe
i�
 heat and magneti
 sus
eptibility [15℄.Re
ently, it has been shown that for separable states, the sum of magneti
 sus
eptibilitiesin the three orthogonal dire
tions x, y, and z obeys the inequality
χ̄ ≡ χx + χy + χz ≥ N S

kBT
(1)where N is the total number of spins in the system, S the magnitude of the spin, kB theBoltzmann 
onstant and T the temperature [14℄. If the magnetization operator Mα =

∑

j S
α
j 
ommutes with the Hamiltonian H of the system, i.e., [H,Mα] = 0, the magneti
sus
eptibility χα (α =x, y, z) 
an be written as

χα =
1

kBT

[〈

(Mα)2
〉

− 〈Mα〉2
] (2)

=
1

kBT





N
∑

i,j=1

〈

Sα
i S

α
j

〉

−
〈

N
∑

i=1

Sα
i

〉2


 (3)Thermodynami
 properties in general relate to ma
ros
opi
 systems and the thermal stateof su
h a system is entangled if χ̄ is < N S
kBT

(Eq. (1)). Using the sus
eptibility inequalityas an EW, one 
an dete
t entanglement from the experimental data without requiring aknowledge of the Hamiltonian of the system.For a multipartite Hamiltonian H , one 
an de�ne the entanglement gap as
GE = Esep − Eg (4)where Esep is the minimum separable energy and Eg the ground state energy of the Hamil-tonian [12℄. For a spin Hamiltonian, Esep is the ground state energy of the equivalent
lassi
al Hamiltonian [11℄. If a system has entanglement gap GE > 0, then one 
an de�nethe entanglement gap temperature, TE , as the temperature at whi
h the thermal (internal)energy U(TE) = Esep. For temperature T < TE , the thermal state of the system is boundto be entangled. Re
ently, a quantum 
omplementarity relation has been proposed [14℄between the thermodynami
 observables, magnetization and magneti
 sus
eptibility. Thisis given by

1 − kBT χ̄

N S
+

〈−→
M
〉2

N2S2
≤ 1 (5)2



where 〈−→M〉2 ≡ 〈Mx〉2 + 〈My〉2 + 〈Mz〉2. De�ne the quantities
P =

〈−→
M
〉2

N2S2
, Q = 1 − kBT χ̄

N S
(6)The quantity P , whi
h depends upon the magnetization, des
ribes the lo
al properties ofindividual spins whereas Q, whi
h involves the sus
eptibility, is representative of quantumspin-spin 
orrelations. From Eq. (1), a nonzero positive value of Q implies the presen
eof entanglement in the system, i.e., non-lo
al 
orrelations. The 
omplementarity relationshows that the non-lo
al properties are enhan
ed at the expense of the lo
al properties inorder that P +Q is ≤ 1.The EWs based on the internal energy and sus
eptibility have been used to study the en-tanglement properties of the spin-1

2
antiferromagneti
 (AFM) 
ompounds Cu(NO3)2, 2.5D2

O(CN)(system of weakly 
oupled spin dimers) [13℄, (NHEt)3

[

V IV
8 V V

4 As8O40 (H2O)
]

.H2O(system of weakly 
oupled spin tetramers) [16℄ and the nanotubular system Na2V3O7 (
on-sists of weakly-
oupled nine-spin rings) [17℄. The weak 
oupling between the spin 
lustersallows ea
h system to be treated as 
onsisting of e�e
tively independent 
lusters. Sin
e the
lusters 
ontain a few spins, the theoreti
al 
al
ulation of entanglement-related quantitiesbe
omes possible. A number of mole
ular magnets are known whi
h are well-des
ribed interms of small spin 
lusters su
h as dimers, trimers, tetramers, tetrahedra et
 [18℄. Fornon-bipartite 
lusters with �all-to-all� spin 
ouplings (trimers, tetrahedra), the EWs basedon the internal energy and sus
eptibility give the same estimate of the temperature abovewhi
h entanglement vanishes [16℄. For bipartite 
lusters (a tetramer des
ribing a squareplaquette of spins with only nearest-neighbour(NN) ex
hange 
ouplings provides an ex-ample), the EW based on the internal energy 
an dete
t only the bipartite entanglementbetween two qubits [12℄. The spin 
lusters 
onsidered so far are des
ribed by Hamiltonianswith homogeneous ex
hange intera
tion strengths. In this paper, we 
onsider the S = 1
2AFM linear tetramer 
ompound NaCuAsO4 [19℄ in whi
h the linear tetramer 
onsistingof four spins is des
ribed by the Heisenberg Hamiltonian

HLT = J
−→
S1.

−→
S2 + αJ

−→
S2.

−→
S3 + J

−→
S3.

−→
S4 (7)We study the entanglement properties of this 
ompound using both the internal energyand the sus
eptibility as EWs. We next determine the entanglement gap temperature TEof small spin 
lusters as a fun
tion of the magnitude S of spins. Lastly, we determine thequantities P and Q (Eq. (6)) appearing in the 
omplementarity relation (Eq. (5)) for aspin-1 dimer 
ompound [Ni2 (Medpt)2(µ−ox)(H2O)2](ClO4)2.2H2O [20℄ and show that thesharp 
hanges in the magnetization and the formation of plateaus at low temperatures area

ompanied by sharp 
hanges and plateaus in the amount of entanglement. Magnetizationplateaus have been observed experimentally in the spin-1 dimer 
ompound. This 
ompoundthus provides a 
on
rete example of a system in whi
h the amount of entanglement 
an
hange steeply as a fun
tion of the magneti
 �eld or does not 
hange over a range of �eldvalues. 3
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FIG. 1. Con
urren
e C12 as a fun
tion of temperature for α = 0.4 and J
kb

= 92.7K.
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II. LINEAR CHAIN TETRAMERThe S = 1
2
AFM 
ompound NaCuAsO4 has a linear 
hain tetrameri
 stru
ture des
ribedby the Hamiltonian, HLT , in Eq. (7) with α ≈ 0.4. The term �linear� refers to the patternof ex
hange 
ouplings and not to the spatial stru
ture of the tetramer [19℄. The total spin

Stot of the tetramer has the values 2, 1 and 0. There are �ve Stot = 2 states, nine Stot = 1states and two Stot = 0 states. The di�erent eigenvalues and eigenve
tors are displayed inAppendix A. We now dis
uss the �nite-temperature entanglement properties of the linear
hain tetramer. The thermal density matrix ρ (T ) is given by
ρ (T ) =

1

Z

∑

Ei

∑

m

e−βEi |ψi,m〉 〈ψi,m| (8)The �rst summation is over all the independent energy eigenstates and the se
ond sum-mation in
ludes terms 
orresponding to the (2Stot + 1) degenerate eigenstates with theeigenvalue Ei. Z denotes the partition fun
tion
Z =

∑

Ei

(

2Stot + 1
)

e−βEi (9)A measure of entanglement between the spins at sites k and l is given by the 
on
urren
e
Ckl. This is 
al
ulated from the redu
ed thermal density matrix ρkl (T ) using standardpro
edure [2, 9℄. Sin
e the eigenvalues and eigenve
tors of the linear 
hain tetramer areknown, the 
al
ulation of Ckl is straightforward. Figure 1 shows the variation of C12 asa fun
tion of temperature for α = 0.4 and J

kB
= 92.7K, the parameter values relevantfor NaCuAsO4 [18, 19℄. The 
on
urren
e C23 is zero for these parameter values. One 
anfurther de�ne a 
riti
al temperature T kl

C above whi
h the entanglement between the spins atthe sites k and l disappears. Figure 2 shows a plot of T 12
C and T 23

C versus α for J
kB

= 92.7K. We next 
al
ulate the entanglement gap temperature TE at whi
h the internal energy
U (TE) = − 1

Z

(

∂Z

∂β

)

= Esep (10)where Esep is the minimum separable energy. Figure 3 shows a plot of TE versus α for J
kB

=
92.7K (Curve a). The operator H −Esep is an EW sin
e Tr [ρ (H − Esep)] = U (T )−Esepis < 0 (≥ 0) when the thermal state is entangled (separable). If the Hamiltonian H ofthe system 
ontains only lo
al intera
tions su
h that H =

∑

<ij>Hij and the underlyinglatti
e is bipartite, then
H − Esep =

∑

<ij>

(Hij − esep,ij) (11)where esep,ij is the minimum separable energy asso
iated with the intera
tion between thespins lo
ated at the sites i and j. In the 
ase of a translationally invariant Hamiltonian,
Hij and esep,ij are the same for ea
h intera
ting spin pair. Ea
h term in the sum on theRHS of Eq. (11) 
an be 
onsidered as a bipartite EW. Thus the expe
tation value of5



H − Esep is negative only if the two spins in the intera
ting spin pairs are entangled. Inthe 
ase of the linear 
hain tetramer, the Hamiltonian HLT is not translationally invariant.This is true even in the limit α = 1. Sin
e, the Hij's and esep,ij's are no longer the samefor ea
h intera
tion bond, T 12
C = T 34

C 6= T 23
C . The expe
tation value of H − Esep nowdepends on the relative magnitudes and signs of the two types of terms on the RHS of Eq.(11). In 
ontrast, 
onsider a 
losed 
hain of four spins in whi
h the NN spins intera
t withthe same ex
hange intera
tion strength. In this 
ase, be
ause of translational invarian
e,

T 12
C = T 23

C = T 34
C = T 41

C = TC and the entanglement gap temperature TE is equal to TC ,the 
riti
al temperature beyond whi
h the entanglement between two NN spins vanishes(
on
urren
e is zero). In the 
ase of the linear 
hain tetramer, a similar interpretation
annot be given.We now use the magneti
 sus
eptibility as an EW to determine the 
riti
al temperature
T

χ
C beyond whi
h the thermal state of the linear 
hain tetramer is separable. We 
onsiderthe 
ase of zero-�eld sus
eptibility. In the absen
e of a magneti
 �eld, 〈Mα〉 = 0 (α =
x, y, z). Also, due to the spin isotropy of the Hamiltonian, HLT , (Stot is a good quantumnumber), χx = χy = χz = χ. The sus
eptibility χ 
an be written as

χ =
β

3Z

∑

Ei

(

2Stot + 1
) (

Stot + 1
)

Stote−βEi (12)The sus
eptibility inequality for separable states (Eq. (1)) be
omes
χ ≥ NS

3kBT
(13)The 
riti
al temperature T χ

C is given by the interse
tion point of the two 
urves : χ versus
T plot from Eq. (12) and χ versus T plot from the equality in Eq. (13) [14, 16℄. For
α = 0.4 and J

kB

= 92.7K, one obtains the estimate T χ
C = 90.88K, whi
h is really thelower bound of the 
riti
al temperature above whi
h entanglement vanishes. Figure 3 alsoshows the variation of T χ

C as a fun
tion of α (Curve b). Sin
e the linear 
hain tetramer isasso
iated with a bipartite graph, T χ
C is > TE , the entanglement gap temperature.III. GENERAL SPIN S AND TEWe have so far 
onsidered the 
ase S = 1

2
. We now 
onsider dimers, trimers and tetrahedraof spins of magnitude S. The Hamiltonians des
ribing the small 
lusters are

Hdimer = J
−→
S1.

−→
S2 (14)

Htrimer = J
(−→
S1.

−→
S2 +

−→
S2.

−→
S3 +

−→
S3.

−→
S1

) (15)
Htetrahedron = J

(−→
S1.

−→
S2 +

−→
S2.

−→
S3 +

−→
S3.

−→
S4 +

−→
S4.

−→
S1 +

−→
S1.

−→
S3 +

−→
S2.

−→
S4

) (16)6
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FIG. 3. Plots of TE (Curve a) and T χ
C (Curve b) for the linear 
hain tetramer as a fun
tionof α ( J

kB

= 92.7K).A trimer and a tetrahedron are de�ned on a non-bipartite graph. The AFM 
luster Hamil-tonian in ea
h 
ase 
ontains �all-to-all� spin 
ouplings and is frustrated as there is noseparable state that simultaneously minimizes the energy of ea
h intera
ting spin pair.Thus esep,ij in Eq. (11) is no longer the minimum separable energy of an intera
ting spinpair, it has a magnitude greater than that of the latter quantity. The minimum separableenergy for the whole Hamiltonian is Esep =
∑

<ij> esep,ij = Ntot esep, where Ntot is the totalnumber of intera
ting spin pairs. Sin
e esep is greater than the minimum separable energyfor an intera
ting spin pair, the EW, H − Esep, 
an dete
t entanglement even if the en-tanglement between the spins in the intera
ting spin pair vanishes, i.e., the 
orrespondingredu
ed density matrix be
omes separable [12℄. In this 
ase, the entanglement gap tem-perature TE is TC , the 
riti
al temperature beyond whi
h the NN 
on
urren
e is zero. Asshown in [16℄, TE = T
χ
C for S = 1

2
non-bipartite 
lusters like the trimer and the tetrahe-dron des
ribed by the Heisenberg Hamiltonian with homogenous ex
hange 
ouplings. Thisresult holds true for general S in the 
ase of spin 
lusters with �all-to-all� homogeneousHeisenberg spin 
ouplings. We thus use only the internal energy-based EW to determinehow the 
riti
al entanglement temperature varies as a fun
tion of S in the 
ases of the spindimer, trimer and the tetrahedron.For Hamiltonians with �all-to-all� spin 
ouplings, the energy eigenvalues of all the eigen-states 
an be determined quite easily from a simple formula. The Hamiltonian 
an bewritten as

H =
1

2

[

(−→
S

tot
)2

−
N
∑

i=1

S2
i

] (17)where −→
S

tot
=
∑N

i=1

−→
S i. The eigenvalue EStot for a state with total spin Stot is7



EStot =
1

2

[

Stot
(

Stot + 1
)

−NS (S + 1)
] (18)where S is the magnitude of a spin. The possible values of Stot are NS, NS − 1, .......et
.The lowest value is zero for N even and 1

2
for N odd. Under the ve
tor addition of angularmomenta, a parti
ular Stot value 
an be a
hieved in more than one way, i.e., has somemultipli
ity. Let P S

StotN be the multipli
ity, i.e., the number of possible states with totalspin angular momentum Stot when N spins, ea
h of magnitude S, are 
ombined. As shownby Mikhailov [21℄, P S
StotN is given by

P S
StotN =

∑

k

(−1)k

(

N

k

)(

N(S + 1) − Stot − (2S + 1)k − 2
N − 2

) (19)Here ( m

n

) are the binomial 
oe�
ients. The summation index k satis�es two 
onditions: (i) k ≥ 0 and (ii) the upper numbers in the binomial 
oe�
ients 
annot be less thanthe lower numbers. Thus, 0 ≤ k ≤ [ (SN−Stot)
2S+1

] where [b] denotes the integer part of b.The minimum separable energy of a spin 
luster is equal to the ground state energy ofthe equivalent 
lassi
al Hamiltonian. In the 
lassi
al ground state, Stot = 0 and ea
h
< S2

i >= S2. Thus, the minimum separable energy, Esep, for the dimer, trimer andtetrahedron is given by Esep = −S2(dimer), − (3
2
S2
) (trimer) and −2S2(tetrahedron).The entanglement gap temperature TE 
an be 
al
ulated by using the relation in Eq. (10).Figure 4 shows the variation of TE with S for dimers (star), trimers (solid square) andtetrahedra (solid diamond). The entanglement gap temperature, TE , is found to in
reasewith S in ea
h 
ase. A

ording to 
onventional notion, spins behave as 
lassi
al obje
ts inthe limit of large S. The 
ommutation bra
ket of spin operators, with ea
h operator s
aledby the total spin S, tends to zero as S → ∞. One would thus expe
t the entanglement gaptemperature TE to de
rease rather than in
rease as the magnitude of S is raised. Someearlier studies have reported �ndings similar to ours. Hao and Zhu [22℄ have studied theAFM Heisenberg 
hain with spins of magnitude S. For a two-sited 
hain, i.e., a dimer,they �nd that the entanglement gap temperature TE in
reases almost linearly with S.For S = 1, they have shown that TE de
reases as the length of the 
hain is in
reased.Wie±niak et al. [14℄ have determined the 
riti
al entanglement temperature, T χ

C , based onthe sus
eptibility as an EW, and �nd the result that T χ
C = 1.6 J for the S = 1

2
Heisenberg
hain and T

χ
C = 2 J for a 
hain of spins 1. As pointed out by Dowling et al. [12℄, it issensible to de�ne a s
aled temperature

t =
kBT

Etot

(20)for a meaningful 
omparison of Hamiltonians with di�erent total energy ranges, Etot (Etotis the di�eren
e between the highest and the lowest energy eigenvalues). The s
aled en-tanglement gap temperature 
an be de�ned as tE = kBTE

Etot
. The inset of Fig. 4 showsthe variation of tE with S for dimers (star), trimers (solid triangle) and tetrahedra (solid8
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aled entanglement gap temperature tE with S.square). One �nds that the s
aled entanglement gap temperature de
reases as S in
reases.The result 
an be interpreted in the following way. As S in
reases, the fra
tion of thetotal energy range of the spin system whi
h 
orresponds to entangled states de
reases andtends to a limiting value as S → ∞. Classi
al behaviour presumably emerges when theentangled states have a negligible 
ontribution to the total energy range.IV. SPIN-1 DIMER : QUANTUM COMPLEMENTAR-ITYBose and Chattopadhyay [23℄ have 
onsidered some toy spin models and shown that �rstorder quantum phase transitions, o

urring at spe
ial values of the external magneti
 �eld,are a

ompanied by magnetization and entanglement jumps. Upward jumps in the magne-tization give rise to downward jumps in the amount of entanglement. Also, magnetizationand entanglement plateaus 
oexist in the same range of magneti
 �elds. Later studiesestablished the general validity of these results [24, 25, 26℄. In this se
tion, we show thatthe quantum 
omplementarity relation (Eq. (5)) provides a natural explanation for the
orrelated 
hanges in the amounts of magnetization and entanglement as a fun
tion of themagneti
 �eld. We illustrate this in the 
ase of a spin-1 dimer 
ompound [Ni2 (Medpt)2(µ−
ox)(H2O)2](ClO4)2.2H2O (Medpt = methyl− bis(3−aminopropyl)amine) whi
h exhibitsmagnetization plateaus at su�
iently low temperatures [20℄. The Hamiltonian des
ribingthe spin-1 dimer is

Hd = J (Sx
1S

x
2 + S

y
1S

y
2 ) + δJ (Sz

1S
z
2) + d

[

(Sz
1)

2 + (Sz
2)

2
]

+B (Sz
1 + Sz

2) (21)9
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FIG. 5. Plots of P , Q and P + Q as a fun
tion of B
J
in the 
ase of a spin-1 dimer(δ = 1, d = 0 and βJ = 3.)where δ is the ex
hange anisotropy parameter, d labels the axial zero-�eld splitting pa-rameter and B the strength of the external magneti
 �eld. The negative (positive) sign ofthe parameter d 
orresponds to an easy-axis (easy-plane) single ion anisotropy. If the spinsystem is entangled, a sharp in
rease in the magnetization (obtained at low temperatures)is a

ompanied by a sharp de
rease in the amount of entanglement so that the 
omplemen-tarity relation is not violated. At T = 0, the sharp 
hanges be
ome the `jumps' asso
iatedwith �rst order quantum phase transitions. As T in
reases, the 
hanges o

ur more gradu-ally as a fun
tion of the magneti
 �eld. In an entangled system, the magnetization plateausare a

ompanied by entanglement plateaus and the 
omplementarity relation 
ontinues tobe valid. To illustrate this, we �rst 
al
ulate the eigenvalues and the eigenve
tors of thedimer Hamiltonian Hd (Eq. (37)). These are displayed in Appendix B. The magnetization

M (only the z-
omponent is non-zero) and χz, the z-
omponent of the sus
eptibility arederived from
M =

1

βZ

∂Z

∂β
, χz =

∂M

∂B
(22)The sus
eptibility 
omponents χx and χy are determined from Eq. (3) with 〈Sx

1 〉 , 〈Sy
1 〉 , 〈Sx

2 〉and 〈Sy
2 〉 = 0 sin
e the magneti
 �eld is in the z-dire
tion. One 
an now 
al
ulate the terms

P and Q (Eq. (6)) appearing in the quantum 
omplementarity relation given by Eq. (5).Figure 5 shows the plots of P , Q and P + Q as a fun
tion of B
J
for δ = 1, d = 0and βJ = 3. Figure 6 shows the appearan
e of plateaus as the temperature is lowered(βJ = 20). Note that a sharp in
rease in P is a

ompanied by a sharp de
rease in Q.Plateaus in P and Q o

ur in the same range of magneti
 �elds. At su�
iently lowtemperatures, the two-step plateau stru
ture is still obtained for non-zero values of d. Theintermediate plateau has a lesser width for negative values of d and disappears at d = −1.At this point, Q is ≤ 0 throughout the range of B

J
values so that the spin system is not10
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FIG. 6. Plots of P , Q and P + Q as a fun
tion of B
J
in the 
ase of a spin-1 dimer(δ = 1, d = 0 and βJ = 20.)entangled. If d is 
hanged from d = −1 to d = +1, the two-step stru
ture in both P and Qis re
overed and the amount of entanglement is no longer zero. The easy-plane single ionanisotropy (d > 0) is found to be favourable towards plateau formation in both P and Q.The 
hanges in P and Q are 
orrelated so that the 
omplementarity relation P + Q ≤ 1is always valid. A two-step magnetization 
urve has been experimentally observed inthe spin-1 ni
kel 
ompound mentioned earlier [20℄. Theoreti
al 
al
ulations, based on ades
ription of the 
ompound as a 
olle
tion of independent spin-1 dimers, give a good �t tothe experimental data on the magnetization and sus
eptibility. The ex
hange anisotropyparameter δ has been taken as 1 and the single ion anisotropy is of the easy-axis type(d < 0). Magnetization experiments have been 
arried out for the external magneti
 �eldparallel to the z and x dire
tions. In both the 
ases, a two-plateau stru
ture has been seenin the magnetization versus �eld 
urves. In the latter 
ase, the plateau stru
ture is found tobe more prominent. Our theoreti
al 
al
ulations suggest that the magnetization plateausexhibited by the spin-1 ni
kel 
ompound are a

ompanied by entanglement plateaus.V. SUMMARY AND DISCUSSIONIn this paper, we study some spe
ial features of entangled small spin 
lusters. We �rst
onsider the S = 1

2
AFM linear 
hain tetramer 
ompound, NaCuAsO4, des
ribed bythe Heisenberg ex
hange intera
tion Hamiltonian with inhomogeneous ex
hange 
ouplingstrengths (Eq. (7)) and show that the entanglement gap temperature, TE , has a non-monotoni
 dependen
e on the ex
hange 
oupling inhomogeneity parameter α. The 
riti
alentanglement temperature, T χ

C , obtained by using the sus
eptibility as an EW, has a mono-toni
 dependen
e on α. We next determine how the entanglement gap temperature, TE ,varies as a fun
tion of S in the 
ases of small spin 
lusters like a dimer, a trimer and a11



tetrahedron. While TE in
reases with S in ea
h 
ase, the s
aled entanglement gap temper-ature tE de
reases as S in
reases and goes to zero S → ∞. The physi
al interpretation isthat the entangled states have a small 
ontribution to the total energy range in the limitof large S. The general appli
ability of this result for spin 
lusters without �all-to-all� spin
ouplings should be investigated. Tóth [11℄ has 
onsidered a Hamiltonian with �all-to-all�
ouplings between N spin-1
2
parti
les. The entanglement gap temperature TE is found toin
rease as N in
reases but tE tends to a 
onstant value as N be
omes large. Dowlinget al. [12℄ have given examples of Hamiltonians des
ribing bipartite systems for whi
h tEin
reases without bound as the dimension of the Hilbert spa
e asso
iated with the subsys-tems in
reases. In our 
ase, with in
reasing S, the Hilbert spa
e of the system is enlargedbut tE de
reases as a fun
tion of S and goes to zero in the limit S → ∞. This is so sin
e

TE has a linear variation with S (Fig. 6) and Etot varies as S2 in the large S limit.Lastly, we study a spin-1 dimer 
ompound as an illustration of the quantum 
omple-mentarity relation. In experiments, the 
ompound exhibits low-temperature magnetizationplateaus. Our theoreti
al 
al
ulations reprodu
e these plateaus and further show that if thesystem is entangled, the magnetization plateaus 
oexist with the entanglement plateaus.Su

essive plateaus are 
onne
ted by sharp 
hanges in the magnetization and the amountof entanglement. The in
rease in one quantity is 
ompensated by a de
rease in the otherquantity so that the 
omplementarity relation is not violated. A large number of AFM
ompounds exhibit the phenomenon of magnetization plateaus [27℄. If these systems areentangled at the temperatures for whi
h magnetization plateaus are observed, one 
anpredi
t the 
oexisten
e of magnetization and entanglement plateaus in su
h systems. TheOshikawa, Yamanaka, A�e
k (OYA) [28℄ theorem provides the 
ondition for the o

ur-ren
e of magnetization plateaus in quasi-1d AFM systems. Magnetization plateaus havealso been observed in a two-dimensional S=1
2
AFM system SrCu2 (BO3)2, thus extendingthe s
ope for the appli
ability of the OYA theorem. It will be of interest to establish a
onne
tion between the OYA theorem and the quantum 
omplementarity relation so thatthe 
onditions for the simultaneous appearan
e of the magnetization and the entanglementplateaus are 
learly identi�ed.A
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Appendix A: Eigenvalues and eigenve
tors of linear 
haintetramerThe Hamiltonian des
ribing the linear 
hain tetramer is given in Eq. (7). The total spinof the tetramer is Stot. The �rst index in the subs
ript of an eigenve
tor refers to theeigenvalue and the se
ond to Stot
z , the z-
omponent of the total spin.

Stot = 2 :
E1 =

(

1
2

+ α
4

)

J (A1)

ψ1,2 = |↑↑↑↑〉
ψ1,1 = 1

2
(|↓↑↑↑〉 + |↑↓↑↑〉 + |↑↑↓↑〉 + |↑↑↑↓〉)

ψ1,0 = 1√
6
(|↑↑↓↓〉 + |↑↓↑↓〉 + |↑↓↓↑〉 + |↓↑↑↓〉 + |↓↑↓↑〉 + |↓↓↑↑〉) (A2)

ψ1,−1 = 1
2
(|↑↓↓↓〉 + |↓↑↓↓〉 + |↓↓↑↓〉 + |↓↓↓↑〉)

ψ1,−2 = |↓↓↓↓〉

Stot = 1 :
E2 = (−1

2
+
α

4
)J (A3)

ψ2,1 = 1
2
(|↓↑↑↑〉 − |↑↓↑↑〉 − |↑↑↓↑〉 + |↑↑↑↓〉)

ψ2,−1 = 1
2
(|↓↑↑↑〉 − |↑↓↑↑〉 − |↑↑↓↑〉 + |↑↑↑↓〉)
ψ2,0 = 1√

6
(|↑↓↓↑〉 − |↓↑↑↓〉)

(A4)

E3 = (−α
4

+
1

2

√
1 + α2)J (A5)

ψ3,1 = 1
N1

(

|↓↑↑↑〉 − |↑↑↑↓〉 −
(

α−
√

1 + α2
)

(|↑↓↑↑〉 − |↑↑↓↑〉
)

ψ3,−1 = 1
N1

(

|↑↓↓↓〉 − |↓↓↓↑〉 −
(

α−
√

1 + α2
)

(|↓↑↓↓〉 − |↓↓↑↓〉
)

ψ3,0 = 1
N2

(

|↑↑↓↓〉 − |↓↓↑↑〉 −
(

1
α
−
√

1 + 1
α2

)

(|↑↓↑↓〉 − |↓↑↓↑〉
)

(A6)

E4 = (−α
4
− 1

2

√
1 + α2) (A7)

ψ4,1 = 1
N3

(

|↓↑↑↑〉 − |↑↑↑↓〉 −
(

α +
√

1 + α2
)

(|↑↓↑↑〉 − |↑↑↓↑〉
)

ψ4,−1 = 1
N3

(

|↑↓↓↓〉 − |↓↓↓↑〉 −
(

α +
√

1 + α2
)

(|↓↑↓↓〉 − |↓↓↑↓〉
)

(A8)

ψ4,0 = 1
N4

(

|↑↑↓↓〉 − |↓↓↑↑〉 −
(

1
α

+
√

1 + 1
α2

)

(|↑↓↑↓〉 − |↓↑↓↑〉
)

Stot = 0 : 15



E5 =







−
(

1

2
+
α

4

)

+

√

1 − α

2
+
α2

4







J (A9)

ψ5,0 =
1

N5
(a1 |↑↑↓↓〉 + b1 |↑↓↑↓〉 + c1 |↑↓↓↑〉 + d1 |↓↑↑↓〉 + e1 |↓↑↓↑〉 + f1 |↓↓↑↑〉) (A10)

E6 =







−
(

1

2
+
α

4

)

−
√

1 − α

2
+
α2

4







J (A11)

ψ5,0 =
1

N6
(a2 |↑↑↓↓〉 + b2 |↑↓↑↓〉 + c2 |↑↓↓↑〉 + d2 |↓↑↑↓〉 + e2 |↓↑↓↑〉 + f2 |↓↓↑↑〉) (A12)where a1 = f1 = a2 = f2 = 1, b1 = − 2

α
+2

√

1
4
− 1

2α
+ 1

α2 = e1, b2 = − 2
α
−2

√

1
4
− 1

2α
+ 1

α2 =

e2, c1 = −1 + 2
α
− 2

√

1
4
− 1

2α
+ 1

α2 = d1, c2 = −1 + 2
α

+ 2
√

1
4
− 1

2α
+ 1

α2 = d2

N1, N2, N3, N4, N5 and N6 are the appropriate normalization 
onstants.Appendix B: Eigenvalues and eigenve
tors of the spin-1dimerThe dimer Hamiltonian Hd is given by Eq. (21). The basis fun
tions are representedas |Sz
1 , S

z
2〉 with Sz

1 = ±1, 0 and Sz
2 = ±1, 0. The eigenstates and the eigenvalues aredes
ribed by φn,m and λn,m where ‘n′ and ‘m′ refer to the total spin Stot of the dimer andits z-
omponent respe
tively.

Stot = 2 :
φ2,±2 = |±1,±1〉

λ2,±2 = δJ + 2d± 2B
(B1)

φ2,±1 = 1√
2
(|±1, 0〉 + |0,±1〉)

λ2,±1 = J + d± B
(B2)

φ2,0 = 1
2
(Am |1,−1〉 + |−1, 1〉) +

√
2Ap |0, 0〉

λ2,0 = − δJ
2

+ d+R
(B3)

Stot = 1 :
φ1,±1 = 1√

2
(|±1, 0〉 − |0,±1〉)

λ1,±1 = −J + d± B
(B4)16



φ1,0 = 1√
2
(|1,−1〉 − |−1, 1〉)

λ2,±1 = −δJ + 2d
(B5)

Stot = 0 :
φ0,0 = 1

2

(

Ap (|1,−1〉 + |−1, 1〉) −
√

2Am |0, 0〉
)

λ0,0 = − δJ
2

+ d− R
(B6)where

R =
[

(

δJ
2
− d

)2
+ 2J2

]
1

2

Ap =
(

R+ δJ

2
−d

R

)
1

2

Am =
(

R− δJ

2
+d

R

)
1

2

(B7)

17


