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Entangled spin lusters : some speial featuresAmit Tribedi and Indrani Bose1st February 2008Department of PhysisBose Institute93/1, Aharya Prafulla Chandra RoadKolkata - 700 009, IndiaAbstratIn this paper, we study three spei� aspets of entanglement in small spin lus-ters. We �rst study the e�et of inhomogeneous exhange oupling strengths on theentanglement properties of the S=1
2 antiferromagneti linear hain tetramer om-pound NaCuAsO4. The entanglement gap temperature, TE , is found to have anon-monotoni dependene on the value of α, the exhange oupling inhomogeneityparameter. We next determine the variation of TE as a funtion of S for a spin dimer,a trimer and a tetrahedron. The temperature TE is found to inrease as a funtion of

S but the saled entanglement gap temperature tE goes to zero as S beomes large.Lastly, we study a spin-1 dimer ompound to illustrate the quantum omplementarityrelation. We show that in the experimentally realizable parameter region, magneti-zation and entanglement plateaus appear simultaneously at low temperatures as afuntion of the magneti �eld. Also, the sharp inrease in one quantity as a funtionof the magneti �eld is aompanied by a sharp derease in the other so that thequantum omplementarity relation is not violated.I. INTRODUCTIONEntanglement is a key feature of quantum mehanial systems and gives rise to non-loalorrelations over and above those expeted from lassial onsiderations [1℄. It an beof di�erent types : bipartite, multipartite, zero-temperature, �nite-temperature et. forwhih suitable measures are available in ertain ases [2, 3, 4, 5, 6, 7, 8℄. In the pastfew years, quantum spin systems have been extensively studied to gain knowledge on thedi�erent aspets of entanglement. The spins in suh systems interat via the exhangeinteration and also with an external �eld, if any. Several studies show that the amount1
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of entanglement an be hanged by varying the temperature T and/or the magnitude ofthe external �eld [3, 4, 9℄. In the ase of entangled thermal states, one an de�ne a ritialtemperature below whih entanglement is present in the system and above whih entangle-ment vanishes, i.e., the system beomes separable. Detetion of entanglement an be madewith the help of an entanglement witness (EW) whih is an observable the expetationvalue of whih is positive in separable and negative in entangled states [10, 11, 12℄. Ther-modynami observables like internal energy, magnetization and suseptibility have beenproposed as EWs [12, 13, 14℄. There is now experimental evidene that entanglement ana�et the marosopi properties of solids like spei� heat and magneti suseptibility [15℄.Reently, it has been shown that for separable states, the sum of magneti suseptibilitiesin the three orthogonal diretions x, y, and z obeys the inequality
χ̄ ≡ χx + χy + χz ≥ N S

kBT
(1)where N is the total number of spins in the system, S the magnitude of the spin, kB theBoltzmann onstant and T the temperature [14℄. If the magnetization operator Mα =

∑

j S
α
j ommutes with the Hamiltonian H of the system, i.e., [H,Mα] = 0, the magnetisuseptibility χα (α =x, y, z) an be written as

χα =
1

kBT

[〈

(Mα)2
〉

− 〈Mα〉2
] (2)

=
1

kBT





N
∑

i,j=1

〈

Sα
i S

α
j

〉

−
〈

N
∑

i=1

Sα
i

〉2


 (3)Thermodynami properties in general relate to marosopi systems and the thermal stateof suh a system is entangled if χ̄ is < N S
kBT

(Eq. (1)). Using the suseptibility inequalityas an EW, one an detet entanglement from the experimental data without requiring aknowledge of the Hamiltonian of the system.For a multipartite Hamiltonian H , one an de�ne the entanglement gap as
GE = Esep − Eg (4)where Esep is the minimum separable energy and Eg the ground state energy of the Hamil-tonian [12℄. For a spin Hamiltonian, Esep is the ground state energy of the equivalentlassial Hamiltonian [11℄. If a system has entanglement gap GE > 0, then one an de�nethe entanglement gap temperature, TE , as the temperature at whih the thermal (internal)energy U(TE) = Esep. For temperature T < TE , the thermal state of the system is boundto be entangled. Reently, a quantum omplementarity relation has been proposed [14℄between the thermodynami observables, magnetization and magneti suseptibility. Thisis given by

1 − kBT χ̄

N S
+

〈−→
M
〉2

N2S2
≤ 1 (5)2



where 〈−→M〉2 ≡ 〈Mx〉2 + 〈My〉2 + 〈Mz〉2. De�ne the quantities
P =

〈−→
M
〉2

N2S2
, Q = 1 − kBT χ̄

N S
(6)The quantity P , whih depends upon the magnetization, desribes the loal properties ofindividual spins whereas Q, whih involves the suseptibility, is representative of quantumspin-spin orrelations. From Eq. (1), a nonzero positive value of Q implies the preseneof entanglement in the system, i.e., non-loal orrelations. The omplementarity relationshows that the non-loal properties are enhaned at the expense of the loal properties inorder that P +Q is ≤ 1.The EWs based on the internal energy and suseptibility have been used to study the en-tanglement properties of the spin-1

2
antiferromagneti (AFM) ompounds Cu(NO3)2, 2.5D2

O(CN)(system of weakly oupled spin dimers) [13℄, (NHEt)3

[

V IV
8 V V

4 As8O40 (H2O)
]

.H2O(system of weakly oupled spin tetramers) [16℄ and the nanotubular system Na2V3O7 (on-sists of weakly-oupled nine-spin rings) [17℄. The weak oupling between the spin lustersallows eah system to be treated as onsisting of e�etively independent lusters. Sine thelusters ontain a few spins, the theoretial alulation of entanglement-related quantitiesbeomes possible. A number of moleular magnets are known whih are well-desribed interms of small spin lusters suh as dimers, trimers, tetramers, tetrahedra et [18℄. Fornon-bipartite lusters with �all-to-all� spin ouplings (trimers, tetrahedra), the EWs basedon the internal energy and suseptibility give the same estimate of the temperature abovewhih entanglement vanishes [16℄. For bipartite lusters (a tetramer desribing a squareplaquette of spins with only nearest-neighbour(NN) exhange ouplings provides an ex-ample), the EW based on the internal energy an detet only the bipartite entanglementbetween two qubits [12℄. The spin lusters onsidered so far are desribed by Hamiltonianswith homogeneous exhange interation strengths. In this paper, we onsider the S = 1
2AFM linear tetramer ompound NaCuAsO4 [19℄ in whih the linear tetramer onsistingof four spins is desribed by the Heisenberg Hamiltonian

HLT = J
−→
S1.

−→
S2 + αJ

−→
S2.

−→
S3 + J

−→
S3.

−→
S4 (7)We study the entanglement properties of this ompound using both the internal energyand the suseptibility as EWs. We next determine the entanglement gap temperature TEof small spin lusters as a funtion of the magnitude S of spins. Lastly, we determine thequantities P and Q (Eq. (6)) appearing in the omplementarity relation (Eq. (5)) for aspin-1 dimer ompound [Ni2 (Medpt)2(µ−ox)(H2O)2](ClO4)2.2H2O [20℄ and show that thesharp hanges in the magnetization and the formation of plateaus at low temperatures areaompanied by sharp hanges and plateaus in the amount of entanglement. Magnetizationplateaus have been observed experimentally in the spin-1 dimer ompound. This ompoundthus provides a onrete example of a system in whih the amount of entanglement anhange steeply as a funtion of the magneti �eld or does not hange over a range of �eldvalues. 3
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C versus α. T kl
C is the ritial entanglement temperature forthe pair of spins at sites k and l.
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II. LINEAR CHAIN TETRAMERThe S = 1
2
AFM ompound NaCuAsO4 has a linear hain tetrameri struture desribedby the Hamiltonian, HLT , in Eq. (7) with α ≈ 0.4. The term �linear� refers to the patternof exhange ouplings and not to the spatial struture of the tetramer [19℄. The total spin

Stot of the tetramer has the values 2, 1 and 0. There are �ve Stot = 2 states, nine Stot = 1states and two Stot = 0 states. The di�erent eigenvalues and eigenvetors are displayed inAppendix A. We now disuss the �nite-temperature entanglement properties of the linearhain tetramer. The thermal density matrix ρ (T ) is given by
ρ (T ) =

1

Z

∑

Ei

∑

m

e−βEi |ψi,m〉 〈ψi,m| (8)The �rst summation is over all the independent energy eigenstates and the seond sum-mation inludes terms orresponding to the (2Stot + 1) degenerate eigenstates with theeigenvalue Ei. Z denotes the partition funtion
Z =

∑

Ei

(

2Stot + 1
)

e−βEi (9)A measure of entanglement between the spins at sites k and l is given by the onurrene
Ckl. This is alulated from the redued thermal density matrix ρkl (T ) using standardproedure [2, 9℄. Sine the eigenvalues and eigenvetors of the linear hain tetramer areknown, the alulation of Ckl is straightforward. Figure 1 shows the variation of C12 asa funtion of temperature for α = 0.4 and J

kB
= 92.7K, the parameter values relevantfor NaCuAsO4 [18, 19℄. The onurrene C23 is zero for these parameter values. One anfurther de�ne a ritial temperature T kl

C above whih the entanglement between the spins atthe sites k and l disappears. Figure 2 shows a plot of T 12
C and T 23

C versus α for J
kB

= 92.7K. We next alulate the entanglement gap temperature TE at whih the internal energy
U (TE) = − 1

Z

(

∂Z

∂β

)

= Esep (10)where Esep is the minimum separable energy. Figure 3 shows a plot of TE versus α for J
kB

=
92.7K (Curve a). The operator H −Esep is an EW sine Tr [ρ (H − Esep)] = U (T )−Esepis < 0 (≥ 0) when the thermal state is entangled (separable). If the Hamiltonian H ofthe system ontains only loal interations suh that H =

∑

<ij>Hij and the underlyinglattie is bipartite, then
H − Esep =

∑

<ij>

(Hij − esep,ij) (11)where esep,ij is the minimum separable energy assoiated with the interation between thespins loated at the sites i and j. In the ase of a translationally invariant Hamiltonian,
Hij and esep,ij are the same for eah interating spin pair. Eah term in the sum on theRHS of Eq. (11) an be onsidered as a bipartite EW. Thus the expetation value of5



H − Esep is negative only if the two spins in the interating spin pairs are entangled. Inthe ase of the linear hain tetramer, the Hamiltonian HLT is not translationally invariant.This is true even in the limit α = 1. Sine, the Hij's and esep,ij's are no longer the samefor eah interation bond, T 12
C = T 34

C 6= T 23
C . The expetation value of H − Esep nowdepends on the relative magnitudes and signs of the two types of terms on the RHS of Eq.(11). In ontrast, onsider a losed hain of four spins in whih the NN spins interat withthe same exhange interation strength. In this ase, beause of translational invariane,

T 12
C = T 23

C = T 34
C = T 41

C = TC and the entanglement gap temperature TE is equal to TC ,the ritial temperature beyond whih the entanglement between two NN spins vanishes(onurrene is zero). In the ase of the linear hain tetramer, a similar interpretationannot be given.We now use the magneti suseptibility as an EW to determine the ritial temperature
T

χ
C beyond whih the thermal state of the linear hain tetramer is separable. We onsiderthe ase of zero-�eld suseptibility. In the absene of a magneti �eld, 〈Mα〉 = 0 (α =
x, y, z). Also, due to the spin isotropy of the Hamiltonian, HLT , (Stot is a good quantumnumber), χx = χy = χz = χ. The suseptibility χ an be written as

χ =
β

3Z

∑

Ei

(

2Stot + 1
) (

Stot + 1
)

Stote−βEi (12)The suseptibility inequality for separable states (Eq. (1)) beomes
χ ≥ NS

3kBT
(13)The ritial temperature T χ

C is given by the intersetion point of the two urves : χ versus
T plot from Eq. (12) and χ versus T plot from the equality in Eq. (13) [14, 16℄. For
α = 0.4 and J

kB

= 92.7K, one obtains the estimate T χ
C = 90.88K, whih is really thelower bound of the ritial temperature above whih entanglement vanishes. Figure 3 alsoshows the variation of T χ

C as a funtion of α (Curve b). Sine the linear hain tetramer isassoiated with a bipartite graph, T χ
C is > TE , the entanglement gap temperature.III. GENERAL SPIN S AND TEWe have so far onsidered the ase S = 1

2
. We now onsider dimers, trimers and tetrahedraof spins of magnitude S. The Hamiltonians desribing the small lusters are

Hdimer = J
−→
S1.

−→
S2 (14)

Htrimer = J
(−→
S1.

−→
S2 +

−→
S2.

−→
S3 +

−→
S3.

−→
S1

) (15)
Htetrahedron = J

(−→
S1.

−→
S2 +

−→
S2.

−→
S3 +

−→
S3.

−→
S4 +

−→
S4.

−→
S1 +

−→
S1.

−→
S3 +

−→
S2.

−→
S4

) (16)6
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FIG. 3. Plots of TE (Curve a) and T χ
C (Curve b) for the linear hain tetramer as a funtionof α ( J

kB

= 92.7K).A trimer and a tetrahedron are de�ned on a non-bipartite graph. The AFM luster Hamil-tonian in eah ase ontains �all-to-all� spin ouplings and is frustrated as there is noseparable state that simultaneously minimizes the energy of eah interating spin pair.Thus esep,ij in Eq. (11) is no longer the minimum separable energy of an interating spinpair, it has a magnitude greater than that of the latter quantity. The minimum separableenergy for the whole Hamiltonian is Esep =
∑

<ij> esep,ij = Ntot esep, where Ntot is the totalnumber of interating spin pairs. Sine esep is greater than the minimum separable energyfor an interating spin pair, the EW, H − Esep, an detet entanglement even if the en-tanglement between the spins in the interating spin pair vanishes, i.e., the orrespondingredued density matrix beomes separable [12℄. In this ase, the entanglement gap tem-perature TE is TC , the ritial temperature beyond whih the NN onurrene is zero. Asshown in [16℄, TE = T
χ
C for S = 1

2
non-bipartite lusters like the trimer and the tetrahe-dron desribed by the Heisenberg Hamiltonian with homogenous exhange ouplings. Thisresult holds true for general S in the ase of spin lusters with �all-to-all� homogeneousHeisenberg spin ouplings. We thus use only the internal energy-based EW to determinehow the ritial entanglement temperature varies as a funtion of S in the ases of the spindimer, trimer and the tetrahedron.For Hamiltonians with �all-to-all� spin ouplings, the energy eigenvalues of all the eigen-states an be determined quite easily from a simple formula. The Hamiltonian an bewritten as

H =
1

2

[

(−→
S

tot
)2

−
N
∑

i=1

S2
i

] (17)where −→
S

tot
=
∑N

i=1

−→
S i. The eigenvalue EStot for a state with total spin Stot is7



EStot =
1

2

[

Stot
(

Stot + 1
)

−NS (S + 1)
] (18)where S is the magnitude of a spin. The possible values of Stot are NS, NS − 1, .......et.The lowest value is zero for N even and 1

2
for N odd. Under the vetor addition of angularmomenta, a partiular Stot value an be ahieved in more than one way, i.e., has somemultipliity. Let P S

StotN be the multipliity, i.e., the number of possible states with totalspin angular momentum Stot when N spins, eah of magnitude S, are ombined. As shownby Mikhailov [21℄, P S
StotN is given by

P S
StotN =

∑

k

(−1)k

(

N

k

)(

N(S + 1) − Stot − (2S + 1)k − 2
N − 2

) (19)Here ( m

n

) are the binomial oe�ients. The summation index k satis�es two onditions: (i) k ≥ 0 and (ii) the upper numbers in the binomial oe�ients annot be less thanthe lower numbers. Thus, 0 ≤ k ≤ [ (SN−Stot)
2S+1

] where [b] denotes the integer part of b.The minimum separable energy of a spin luster is equal to the ground state energy ofthe equivalent lassial Hamiltonian. In the lassial ground state, Stot = 0 and eah
< S2

i >= S2. Thus, the minimum separable energy, Esep, for the dimer, trimer andtetrahedron is given by Esep = −S2(dimer), − (3
2
S2
) (trimer) and −2S2(tetrahedron).The entanglement gap temperature TE an be alulated by using the relation in Eq. (10).Figure 4 shows the variation of TE with S for dimers (star), trimers (solid square) andtetrahedra (solid diamond). The entanglement gap temperature, TE , is found to inreasewith S in eah ase. Aording to onventional notion, spins behave as lassial objets inthe limit of large S. The ommutation braket of spin operators, with eah operator saledby the total spin S, tends to zero as S → ∞. One would thus expet the entanglement gaptemperature TE to derease rather than inrease as the magnitude of S is raised. Someearlier studies have reported �ndings similar to ours. Hao and Zhu [22℄ have studied theAFM Heisenberg hain with spins of magnitude S. For a two-sited hain, i.e., a dimer,they �nd that the entanglement gap temperature TE inreases almost linearly with S.For S = 1, they have shown that TE dereases as the length of the hain is inreased.Wie±niak et al. [14℄ have determined the ritial entanglement temperature, T χ

C , based onthe suseptibility as an EW, and �nd the result that T χ
C = 1.6 J for the S = 1

2
Heisenberghain and T

χ
C = 2 J for a hain of spins 1. As pointed out by Dowling et al. [12℄, it issensible to de�ne a saled temperature

t =
kBT

Etot

(20)for a meaningful omparison of Hamiltonians with di�erent total energy ranges, Etot (Etotis the di�erene between the highest and the lowest energy eigenvalues). The saled en-tanglement gap temperature an be de�ned as tE = kBTE

Etot
. The inset of Fig. 4 showsthe variation of tE with S for dimers (star), trimers (solid triangle) and tetrahedra (solid8
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FIG. 4. Variation of the entanglement gap temperature, TE , with S for dimers (star),trimers (solid triangle) and tetrahedra (solid square). The inset shows the variation of thesaled entanglement gap temperature tE with S.square). One �nds that the saled entanglement gap temperature dereases as S inreases.The result an be interpreted in the following way. As S inreases, the fration of thetotal energy range of the spin system whih orresponds to entangled states dereases andtends to a limiting value as S → ∞. Classial behaviour presumably emerges when theentangled states have a negligible ontribution to the total energy range.IV. SPIN-1 DIMER : QUANTUM COMPLEMENTAR-ITYBose and Chattopadhyay [23℄ have onsidered some toy spin models and shown that �rstorder quantum phase transitions, ourring at speial values of the external magneti �eld,are aompanied by magnetization and entanglement jumps. Upward jumps in the magne-tization give rise to downward jumps in the amount of entanglement. Also, magnetizationand entanglement plateaus oexist in the same range of magneti �elds. Later studiesestablished the general validity of these results [24, 25, 26℄. In this setion, we show thatthe quantum omplementarity relation (Eq. (5)) provides a natural explanation for theorrelated hanges in the amounts of magnetization and entanglement as a funtion of themagneti �eld. We illustrate this in the ase of a spin-1 dimer ompound [Ni2 (Medpt)2(µ−
ox)(H2O)2](ClO4)2.2H2O (Medpt = methyl− bis(3−aminopropyl)amine) whih exhibitsmagnetization plateaus at su�iently low temperatures [20℄. The Hamiltonian desribingthe spin-1 dimer is

Hd = J (Sx
1S

x
2 + S

y
1S

y
2 ) + δJ (Sz

1S
z
2) + d

[

(Sz
1)

2 + (Sz
2)

2
]

+B (Sz
1 + Sz

2) (21)9
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J
in the ase of a spin-1 dimer(δ = 1, d = 0 and βJ = 3.)where δ is the exhange anisotropy parameter, d labels the axial zero-�eld splitting pa-rameter and B the strength of the external magneti �eld. The negative (positive) sign ofthe parameter d orresponds to an easy-axis (easy-plane) single ion anisotropy. If the spinsystem is entangled, a sharp inrease in the magnetization (obtained at low temperatures)is aompanied by a sharp derease in the amount of entanglement so that the omplemen-tarity relation is not violated. At T = 0, the sharp hanges beome the `jumps' assoiatedwith �rst order quantum phase transitions. As T inreases, the hanges our more gradu-ally as a funtion of the magneti �eld. In an entangled system, the magnetization plateausare aompanied by entanglement plateaus and the omplementarity relation ontinues tobe valid. To illustrate this, we �rst alulate the eigenvalues and the eigenvetors of thedimer Hamiltonian Hd (Eq. (37)). These are displayed in Appendix B. The magnetization

M (only the z-omponent is non-zero) and χz, the z-omponent of the suseptibility arederived from
M =

1

βZ

∂Z

∂β
, χz =

∂M

∂B
(22)The suseptibility omponents χx and χy are determined from Eq. (3) with 〈Sx

1 〉 , 〈Sy
1 〉 , 〈Sx

2 〉and 〈Sy
2 〉 = 0 sine the magneti �eld is in the z-diretion. One an now alulate the terms

P and Q (Eq. (6)) appearing in the quantum omplementarity relation given by Eq. (5).Figure 5 shows the plots of P , Q and P + Q as a funtion of B
J
for δ = 1, d = 0and βJ = 3. Figure 6 shows the appearane of plateaus as the temperature is lowered(βJ = 20). Note that a sharp inrease in P is aompanied by a sharp derease in Q.Plateaus in P and Q our in the same range of magneti �elds. At su�iently lowtemperatures, the two-step plateau struture is still obtained for non-zero values of d. Theintermediate plateau has a lesser width for negative values of d and disappears at d = −1.At this point, Q is ≤ 0 throughout the range of B

J
values so that the spin system is not10
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J
in the ase of a spin-1 dimer(δ = 1, d = 0 and βJ = 20.)entangled. If d is hanged from d = −1 to d = +1, the two-step struture in both P and Qis reovered and the amount of entanglement is no longer zero. The easy-plane single ionanisotropy (d > 0) is found to be favourable towards plateau formation in both P and Q.The hanges in P and Q are orrelated so that the omplementarity relation P + Q ≤ 1is always valid. A two-step magnetization urve has been experimentally observed inthe spin-1 nikel ompound mentioned earlier [20℄. Theoretial alulations, based on adesription of the ompound as a olletion of independent spin-1 dimers, give a good �t tothe experimental data on the magnetization and suseptibility. The exhange anisotropyparameter δ has been taken as 1 and the single ion anisotropy is of the easy-axis type(d < 0). Magnetization experiments have been arried out for the external magneti �eldparallel to the z and x diretions. In both the ases, a two-plateau struture has been seenin the magnetization versus �eld urves. In the latter ase, the plateau struture is found tobe more prominent. Our theoretial alulations suggest that the magnetization plateausexhibited by the spin-1 nikel ompound are aompanied by entanglement plateaus.V. SUMMARY AND DISCUSSIONIn this paper, we study some speial features of entangled small spin lusters. We �rstonsider the S = 1

2
AFM linear hain tetramer ompound, NaCuAsO4, desribed bythe Heisenberg exhange interation Hamiltonian with inhomogeneous exhange ouplingstrengths (Eq. (7)) and show that the entanglement gap temperature, TE , has a non-monotoni dependene on the exhange oupling inhomogeneity parameter α. The ritialentanglement temperature, T χ

C , obtained by using the suseptibility as an EW, has a mono-toni dependene on α. We next determine how the entanglement gap temperature, TE ,varies as a funtion of S in the ases of small spin lusters like a dimer, a trimer and a11



tetrahedron. While TE inreases with S in eah ase, the saled entanglement gap temper-ature tE dereases as S inreases and goes to zero S → ∞. The physial interpretation isthat the entangled states have a small ontribution to the total energy range in the limitof large S. The general appliability of this result for spin lusters without �all-to-all� spinouplings should be investigated. Tóth [11℄ has onsidered a Hamiltonian with �all-to-all�ouplings between N spin-1
2
partiles. The entanglement gap temperature TE is found toinrease as N inreases but tE tends to a onstant value as N beomes large. Dowlinget al. [12℄ have given examples of Hamiltonians desribing bipartite systems for whih tEinreases without bound as the dimension of the Hilbert spae assoiated with the subsys-tems inreases. In our ase, with inreasing S, the Hilbert spae of the system is enlargedbut tE dereases as a funtion of S and goes to zero in the limit S → ∞. This is so sine

TE has a linear variation with S (Fig. 6) and Etot varies as S2 in the large S limit.Lastly, we study a spin-1 dimer ompound as an illustration of the quantum omple-mentarity relation. In experiments, the ompound exhibits low-temperature magnetizationplateaus. Our theoretial alulations reprodue these plateaus and further show that if thesystem is entangled, the magnetization plateaus oexist with the entanglement plateaus.Suessive plateaus are onneted by sharp hanges in the magnetization and the amountof entanglement. The inrease in one quantity is ompensated by a derease in the otherquantity so that the omplementarity relation is not violated. A large number of AFMompounds exhibit the phenomenon of magnetization plateaus [27℄. If these systems areentangled at the temperatures for whih magnetization plateaus are observed, one anpredit the oexistene of magnetization and entanglement plateaus in suh systems. TheOshikawa, Yamanaka, A�ek (OYA) [28℄ theorem provides the ondition for the our-rene of magnetization plateaus in quasi-1d AFM systems. Magnetization plateaus havealso been observed in a two-dimensional S=1
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Appendix A: Eigenvalues and eigenvetors of linear haintetramerThe Hamiltonian desribing the linear hain tetramer is given in Eq. (7). The total spinof the tetramer is Stot. The �rst index in the subsript of an eigenvetor refers to theeigenvalue and the seond to Stot
z , the z-omponent of the total spin.

Stot = 2 :
E1 =

(

1
2

+ α
4

)

J (A1)

ψ1,2 = |↑↑↑↑〉
ψ1,1 = 1

2
(|↓↑↑↑〉 + |↑↓↑↑〉 + |↑↑↓↑〉 + |↑↑↑↓〉)

ψ1,0 = 1√
6
(|↑↑↓↓〉 + |↑↓↑↓〉 + |↑↓↓↑〉 + |↓↑↑↓〉 + |↓↑↓↑〉 + |↓↓↑↑〉) (A2)

ψ1,−1 = 1
2
(|↑↓↓↓〉 + |↓↑↓↓〉 + |↓↓↑↓〉 + |↓↓↓↑〉)

ψ1,−2 = |↓↓↓↓〉

Stot = 1 :
E2 = (−1

2
+
α

4
)J (A3)

ψ2,1 = 1
2
(|↓↑↑↑〉 − |↑↓↑↑〉 − |↑↑↓↑〉 + |↑↑↑↓〉)

ψ2,−1 = 1
2
(|↓↑↑↑〉 − |↑↓↑↑〉 − |↑↑↓↑〉 + |↑↑↑↓〉)
ψ2,0 = 1√

6
(|↑↓↓↑〉 − |↓↑↑↓〉)

(A4)

E3 = (−α
4

+
1

2

√
1 + α2)J (A5)

ψ3,1 = 1
N1

(

|↓↑↑↑〉 − |↑↑↑↓〉 −
(

α−
√

1 + α2
)

(|↑↓↑↑〉 − |↑↑↓↑〉
)

ψ3,−1 = 1
N1

(

|↑↓↓↓〉 − |↓↓↓↑〉 −
(

α−
√

1 + α2
)

(|↓↑↓↓〉 − |↓↓↑↓〉
)

ψ3,0 = 1
N2

(

|↑↑↓↓〉 − |↓↓↑↑〉 −
(

1
α
−
√

1 + 1
α2

)

(|↑↓↑↓〉 − |↓↑↓↑〉
)

(A6)

E4 = (−α
4
− 1

2

√
1 + α2) (A7)

ψ4,1 = 1
N3

(

|↓↑↑↑〉 − |↑↑↑↓〉 −
(

α +
√

1 + α2
)

(|↑↓↑↑〉 − |↑↑↓↑〉
)

ψ4,−1 = 1
N3

(

|↑↓↓↓〉 − |↓↓↓↑〉 −
(

α +
√

1 + α2
)

(|↓↑↓↓〉 − |↓↓↑↓〉
)

(A8)

ψ4,0 = 1
N4

(

|↑↑↓↓〉 − |↓↓↑↑〉 −
(

1
α

+
√

1 + 1
α2

)

(|↑↓↑↓〉 − |↓↑↓↑〉
)
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E5 =







−
(

1

2
+
α

4

)

+

√

1 − α

2
+
α2

4







J (A9)

ψ5,0 =
1

N5
(a1 |↑↑↓↓〉 + b1 |↑↓↑↓〉 + c1 |↑↓↓↑〉 + d1 |↓↑↑↓〉 + e1 |↓↑↓↑〉 + f1 |↓↓↑↑〉) (A10)

E6 =







−
(

1

2
+
α

4

)

−
√

1 − α

2
+
α2

4







J (A11)

ψ5,0 =
1

N6
(a2 |↑↑↓↓〉 + b2 |↑↓↑↓〉 + c2 |↑↓↓↑〉 + d2 |↓↑↑↓〉 + e2 |↓↑↓↑〉 + f2 |↓↓↑↑〉) (A12)where a1 = f1 = a2 = f2 = 1, b1 = − 2

α
+2

√

1
4
− 1

2α
+ 1

α2 = e1, b2 = − 2
α
−2

√

1
4
− 1

2α
+ 1

α2 =

e2, c1 = −1 + 2
α
− 2

√

1
4
− 1

2α
+ 1

α2 = d1, c2 = −1 + 2
α

+ 2
√

1
4
− 1

2α
+ 1

α2 = d2

N1, N2, N3, N4, N5 and N6 are the appropriate normalization onstants.Appendix B: Eigenvalues and eigenvetors of the spin-1dimerThe dimer Hamiltonian Hd is given by Eq. (21). The basis funtions are representedas |Sz
1 , S

z
2〉 with Sz

1 = ±1, 0 and Sz
2 = ±1, 0. The eigenstates and the eigenvalues aredesribed by φn,m and λn,m where ‘n′ and ‘m′ refer to the total spin Stot of the dimer andits z-omponent respetively.

Stot = 2 :
φ2,±2 = |±1,±1〉

λ2,±2 = δJ + 2d± 2B
(B1)

φ2,±1 = 1√
2
(|±1, 0〉 + |0,±1〉)

λ2,±1 = J + d± B
(B2)

φ2,0 = 1
2
(Am |1,−1〉 + |−1, 1〉) +

√
2Ap |0, 0〉

λ2,0 = − δJ
2

+ d+R
(B3)

Stot = 1 :
φ1,±1 = 1√

2
(|±1, 0〉 − |0,±1〉)

λ1,±1 = −J + d± B
(B4)16



φ1,0 = 1√
2
(|1,−1〉 − |−1, 1〉)

λ2,±1 = −δJ + 2d
(B5)

Stot = 0 :
φ0,0 = 1

2

(

Ap (|1,−1〉 + |−1, 1〉) −
√

2Am |0, 0〉
)

λ0,0 = − δJ
2

+ d− R
(B6)where

R =
[

(

δJ
2
− d

)2
+ 2J2

]
1

2

Ap =
(

R+ δJ

2
−d

R

)
1

2

Am =
(

R− δJ

2
+d

R

)
1

2

(B7)
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