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Abstract

In this paper, we study three specific aspects of entanglement in small spin clus-
ters. We first study the effect of inhomogeneous exchange coupling strengths on the
entanglement properties of the S:% antiferromagnetic linear chain tetramer com-
pound NaCuAsO4. The entanglement gap temperature, Tg, is found to have a
non-monotonic dependence on the value of a, the exchange coupling inhomogeneity
parameter. We next determine the variation of T as a function of S for a spin dimer,
a trimer and a tetrahedron. The temperature Tg is found to increase as a function of
S but the scaled entanglement gap temperature tg goes to zero as S becomes large.
Lastly, we study a spin-1 dimer compound to illustrate the quantum complementarity
relation. We show that in the experimentally realizable parameter region, magneti-
zation and entanglement plateaus appear simultaneously at low temperatures as a
function of the magnetic field. Also, the sharp increase in one quantity as a function
of the magnetic field is accompanied by a sharp decrease in the other so that the
quantum complementarity relation is not violated.

[. INTRODUCTION

Entanglement is a key feature of quantum mechanical systems and gives rise to non-local
correlations over and above those expected from classical considerations [I]. It can be
of different types : bipartite, multipartite, zero-temperature, finite-temperature etc. for
which suitable measures are available in certain cases |2, B, 4, Bl 6, [7, B]. In the past
few years, quantum spin systems have been extensively studied to gain knowledge on the
different aspects of entanglement. The spins in such systems interact via the exchange
interaction and also with an external field, if any. Several studies show that the amount
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of entanglement can be changed by varying the temperature T and/or the magnitude of
the external field [3, 4, 9)]. In the case of entangled thermal states, one can define a critical
temperature below which entanglement is present in the system and above which entangle-
ment vanishes, i.e., the system becomes separable. Detection of entanglement can be made
with the help of an entanglement witness (EW) which is an observable the expectation
value of which is positive in separable and negative in entangled states 10} [T}, T2]. Ther-
modynamic observables like internal energy, magnetization and susceptibility have been
proposed as EWs [12, [[3] [[4]. There is now experimental evidence that entanglement can
affect the macroscopic properties of solids like specific heat and magnetic susceptibility [T5].
Recently, it has been shown that for separable states, the sum of magnetic susceptibilities
in the three orthogonal directions x, y, and z obeys the inequality

XEXx+xy+sz—kBT (1)

where N is the total number of spins in the system, S the magnitude of the spin, kg the
Boltzmann constant and 7' the temperature [I4]. If the magnetization operator M, =
>-; S5 commutes with the Hamiltonian H of the system, i.e., [H, M,] = 0, the magnetic
susceptibility x, (o =x, y, z) can be written as

1

Yo = o [((O4)7) = ()] 2)
1 N N 2

Thermodynamic properties in general relate to macroscopic systems and the thermal state
of such a system is entangled if y is < ,?;—? (Eq. (1)). Using the susceptibility inequality
as an EW, one can detect entanglement from the experimental data without requiring a
knowledge of the Hamiltonian of the system.

For a multipartite Hamiltonian H, one can define the entanglement gap as

Gp = E., — E, (4)

where Ej., is the minimum separable energy and £, the ground state energy of the Hamil-
tonian [I2]. For a spin Hamiltonian, F,., is the ground state energy of the equivalent
classical Hamiltonian [TT]. If a system has entanglement gap Gg > 0, then one can define
the entanglement gap temperature, Tg, as the temperature at which the thermal (internal)
energy U(Tg) = Esep. For temperature 7' < T, the thermal state of the system is bound
to be entangled. Recently, a quantum complementarity relation has been proposed [14]
between the thermodynamic observables, magnetization and magnetic susceptibility. This
is given by

ey (M)
b ]E\;TSXJF§V25>‘2

<1 (5)



where (M ? = (M, 21 (M) + M, 2 Define the quantities
y

ksTx
NS (6)

Q=1-

The quantity P, which depends upon the magnetization, describes the local properties of
individual spins whereas (), which involves the susceptibility, is representative of quantum
spin-spin correlations. From Eq. (1), a nonzero positive value of ) implies the presence
of entanglement in the system, i.e., non-local correlations. The complementarity relation
shows that the non-local properties are enhanced at the expense of the local properties in
order that P+ @ is < 1.

The EWs based on the internal energy and susceptibility have been used to study the en-

tanglement properties of the spin—% antiferromagnetic (AFM) compounds Cu(NQOs)s,2.5D,
O(C'N)(system of weakly coupled spin dimers) [I3], (NHEt), {VSIVVZLVASE;OALO (HQO)} .H,O
(system of weakly coupled spin tetramers) [I6] and the nanotubular system NasV30; (con-
sists of weakly-coupled nine-spin rings) [I7]. The weak coupling between the spin clusters
allows each system to be treated as consisting of effectively independent clusters. Since the
clusters contain a few spins, the theoretical calculation of entanglement-related quantities
becomes possible. A number of molecular magnets are known which are well-described in
terms of small spin clusters such as dimers, trimers, tetramers, tetrahedra etc [I8]. For
non-bipartite clusters with “all-to-all” spin couplings (trimers, tetrahedra), the EWs based
on the internal energy and susceptibility give the same estimate of the temperature above
which entanglement vanishes [I6]. For bipartite clusters (a tetramer describing a square
plaquette of spins with only nearest-neighbour(NN) exchange couplings provides an ex-
ample), the EW based on the internal energy can detect only the bipartite entanglement
between two qubits [T2]. The spin clusters considered so far are described by Hamiltonians
with homogeneous exchange interaction strengths. In this paper, we consider the S = %
AFM linear tetramer compound NaCuAsO, [19)] in which the linear tetramer consisting

of four spins is described by the Heisenberg Hamiltonian

Hir=J35.9 +aJS.5 +J55.9, (7)

We study the entanglement properties of this compound using both the internal energy
and the susceptibility as EWs. We next determine the entanglement gap temperature Tg
of small spin clusters as a function of the magnitude S of spins. Lastly, we determine the
quantities P and @ (Eq. (6)) appearing in the complementarity relation (Eq. (5)) for a
spin-1 dimer compound [Niy (Medpt)s(pi—ox)(H20)2](ClOy4)2.2H20 [20] and show that the
sharp changes in the magnetization and the formation of plateaus at low temperatures are
accompanied by sharp changes and plateaus in the amount of entanglement. Magnetization
plateaus have been observed experimentally in the spin-1 dimer compound. This compound
thus provides a concrete example of a system in which the amount of entanglement can
change steeply as a function of the magnetic field or does not change over a range of field
values.
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FIG. 1. Concurrence Ci5 as a function of temperature for = 0.4 and k—Jb =92.7K.
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FIG. 2. Plots of T}?* and TZ® versus a. T# is the critical entanglement temperature for
the pair of spins at sites k£ and [.



II. LINEAR CHAIN TETRAMER

The S = % AFM compound NaCuAsOy has a linear chain tetrameric structure described
by the Hamiltonian, Hyr, in Eq. (7) with a ~ 0.4. The term “linear” refers to the pattern
of exchange couplings and not to the spatial structure of the tetramer [T9]. The total spin
St of the tetramer has the values 2, 1 and 0. There are five S% = 2 states, nine S% =1
states and two S = 0 states. The different eigenvalues and eigenvectors are displayed in
Appendix A. We now discuss the finite-temperature entanglement properties of the linear
chain tetramer. The thermal density matrix p (7') is given by

P = 5 ST i) Wil 0

The first summation is over all the independent energy eigenstates and the second sum-
mation includes terms corresponding to the (2S5™ + 1) degenerate eigenstates with the
eigenvalue F;. Z denotes the partition function

Z =3 (25" +1)e " (9)
E;

A measure of entanglement between the spins at sites k£ and [ is given by the concurrence
Cri- This is calculated from the reduced thermal density matrix py; (T') using standard
procedure [2, [@]. Since the eigenvalues and eigenvectors of the linear chain tetramer are
known, the calculation of CY,; is straightforward. Figure 1 shows the variation of C}, as
a function of temperature for « = 0.4 and é = 92.7 K, the parameter values relevant
for NaCuAsO, |18, M9]. The concurrence Chg is zero for these parameter values. One can
further define a critical temperature T{! above which the entanglement between the spins at
the sites k and [ disappears. Figure 2 shows a plot of T}? and T2* versus « for é =92.7K
. We next calculate the entanglement gap temperature 7% at which the internal energy

1 (07
U(Tg) = —7 <%> = Eyep (10)
where Ej., is the minimum separable energy. Figure 3 shows a plot of T versus « for é =
92.7K (Curve a). The operator H — Ej., is an EW since Tr [p (H — Esep)] = U (T') — Egep
is < 0 (> 0) when the thermal state is entangled (separable). If the Hamiltonian H of
the system contains only local interactions such that H = }°_;;» H;; and the underlying
lattice is bipartite, then

H—Eyp= ) (Hij — esepij) (11)

<ij>
where e, ;5 is the minimum separable energy associated with the interaction between the
spins located at the sites ¢ and j. In the case of a translationally invariant Hamiltonian,
H;; and egp;; are the same for each interacting spin pair. Each term in the sum on the
RHS of Eq. (11) can be considered as a bipartite EW. Thus the expectation value of



H — E., is negative only if the two spins in the interacting spin pairs are entangled. In
the case of the linear chain tetramer, the Hamiltonian Hr is not translationally invariant.
This is true even in the limit o = 1. Since, the H;;’s and e, ;’s are no longer the same
for each interaction bond, T¢? = Tg* # T2. The expectation value of H — Ej, now
depends on the relative magnitudes and signs of the two types of terms on the RHS of Eq.
(11). In contrast, consider a closed chain of four spins in which the NN spins interact with
the same exchange interaction strength. In this case, because of translational invariance,
T =T = T3 = TA' = Tc and the entanglement gap temperature Tg is equal to Tg,
the critical temperature beyond which the entanglement between two NN spins vanishes
(concurrence is zero). In the case of the linear chain tetramer, a similar interpretation
cannot be given.

We now use the magnetic susceptibility as an EW to determine the critical temperature
T beyond which the thermal state of the linear chain tetramer is separable. We consider
the case of zero-field susceptibility. In the absence of a magnetic field, (M,) = 0(a =
x,y, z). Also, due to the spin isotropy of the Hamiltonian, Hy7, (S™ is a good quantum
number), x; = Xy = X = X. The susceptibility x can be written as

g

=37 2 (28" + 1) (™" + 1) Stote=PE (12)

X

The susceptibility inequality for separable states (Eq. (1)) becomes

NS
3kpT

The critical temperature T/ is given by the intersection point of the two curves : x versus
T plot from Eq. (12) and x versus T plot from the equality in Eq. (13) |14, 06]. For
a = 04 and é = 92.7 K, one obtains the estimate 75 = 90.88 K, which is really the
lower bound of the critical temperature above which entanglement vanishes. Figure 3 also
shows the variation of 75 as a function of a (Curve b). Since the linear chain tetramer is
associated with a bipartite graph, 75 is > T, the entanglement gap temperature.

X > (13)

ITI. GENERAL SPIN S AND T}

We have so far considered the case S = % We now consider dimers, trimers and tetrahedra
of spins of magnitude S. The Hamiltonians describing the small clusters are

Hdimer - JS—>15_)(2 (14)
Htrimer =J (?ls—g + §2>S—>'3 + S—gﬁ) (15)
Htetrahedron =J (—1>§2 + —2)‘§3) + _3)‘§4) + _4)§ + —1>§3 + —2>‘§4)l) (]-6)
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FIG. 3. Plots of T (Curve a) and T (Curve b) for the linear chain tetramer as a function
of a (L = 92.7K).

kp

A trimer and a tetrahedron are defined on a non-bipartite graph. The AFM cluster Hamil-
tonian in each case contains “all-to-all” spin couplings and is frustrated as there is no
separable state that simultaneously minimizes the energy of each interacting spin pair.
Thus egp4; in Eq. (11) is no longer the minimum separable energy of an interacting spin
pair, it has a magnitude greater than that of the latter quantity. The minimum separable
energy for the whole Hamiltonian is Eyep = 3°_;js €sepij = Niot €sep, Where Ny is the total
number of interacting spin pairs. Since e, is greater than the minimum separable energy
for an interacting spin pair, the EW, H — E,.,, can detect entanglement even if the en-
tanglement between the spins in the interacting spin pair vanishes, i.e., the corresponding
reduced density matrix becomes separable [I2]. In this case, the entanglement gap tem-
perature Tg is T¢, the critical temperature beyond which the NN concurrence is zero. As
shown in [T6], Ty = T§ for S = 1 non-bipartite clusters like the trimer and the tetrahe-
dron described by the Heisenberg Hamiltonian with homogenous exchange couplings. This
result holds true for general S in the case of spin clusters with “all-to-all” homogeneous
Heisenberg spin couplings. We thus use only the internal energy-based EW to determine
how the critical entanglement temperature varies as a function of S in the cases of the spin
dimer, trimer and the tetrahedron.

For Hamiltonians with “all-to-all” spin couplings, the energy eigenvalues of all the eigen-
states can be determined quite easily from a simple formula. The Hamiltonian can be
written as

H= % l(?“’tf - ésf] (17)

tot
where S = >N 'S':. The eigenvalue Egeor for a state with total spin 5% is



By = 5 [ (8 41) = NS (5 + 1) (18)

where S is the magnitude of a spin. The possible values of S%** are NS, NS —1, ....... etc.
The lowest value is zero for N even and % for N odd. Under the vector addition of angular
momenta, a particular S™ value can be achieved in more than one way, i.e., has some
multiplicity. Let qutot n be the multiplicity, i.e., the number of possible states with total
spin angular momentum S when N spins, each of magnitude S, are combined. As shown
by Mikhailov [21], Py is given by

Pl = zk: (1)* ( ];7 ) ( N(S+1)— S;t:2(25 + 1)k —2 ) (19)

Here < 7:: ) are the binomial coefficients. The summation index k satisfies two conditions

(1) k > 0 and (i7) the upper numbers in the binomial coefficients cannot be less than
the lower numbers. Thus, 0 < k£ < [(S];[S;flm)] where [b] denotes the integer part of b.
The minimum separable energy of a spin cluster is equal to the ground state energy of
the equivalent classical Hamiltonian. In the classical ground state, S = 0 and each

< 82 >= S2. Thus, the minimum separable energy, Fi.,, for the dimer, trimer and
tetrahedron is given by F,., = —S?%(dimer), — (%SQ> (trimer) and —25?(tetrahedron).
The entanglement gap temperature T can be calculated by using the relation in Eq. (10).
Figure 4 shows the variation of Tx with S for dimers (star), trimers (solid square) and
tetrahedra (solid diamond). The entanglement gap temperature, Tg, is found to increase
with S in each case. According to conventional notion, spins behave as classical objects in
the limit of large S. The commutation bracket of spin operators, with each operator scaled
by the total spin S, tends to zero as S — co. One would thus expect the entanglement gap
temperature T to decrease rather than increase as the magnitude of S is raised. Some
earlier studies have reported findings similar to ours. Hao and Zhu [22] have studied the
AFM Heisenberg chain with spins of magnitude S. For a two-sited chain, i.e., a dimer,
they find that the entanglement gap temperature Tp increases almost linearly with S.
For S = 1, they have shown that T decreases as the length of the chain is increased.
Wiesniak et al. [I4] have determined the critical entanglement temperature, 7%, based on
the susceptibility as an EW, and find the result that 7 = 1.6 J for the S = % Heisenberg
chain and T = 2 J for a chain of spins 1. As pointed out by Dowling et al. [I2], it is
sensible to define a scaled temperature

,_ ksT
Etot

for a meaningful comparison of Hamiltonians with different total energy ranges, E;o (Eyor
is the difference between the highest and the lowest energy eigenvalues). The scaled en-
tanglement gap temperature can be defined as tgp = % The inset of Fig. 4 shows

the variation of tg with S for dimers (star), trimers (solido triangle) and tetrahedra (solid

(20)



FIG. 4. Variation of the entanglement gap temperature, T, with S for dimers (star),
trimers (solid triangle) and tetrahedra (solid square). The inset shows the variation of the
scaled entanglement gap temperature tg with S.

square). One finds that the scaled entanglement gap temperature decreases as S increases.
The result can be interpreted in the following way. As S increases, the fraction of the
total energy range of the spin system which corresponds to entangled states decreases and
tends to a limiting value as S — oo. Classical behaviour presumably emerges when the
entangled states have a negligible contribution to the total energy range.

IV. SPIN-1 DIMER : QUANTUM COMPLEMENTAR-
ITY

Bose and Chattopadhyay [23] have considered some toy spin models and shown that first
order quantum phase transitions, occurring at special values of the external magnetic field,
are accompanied by magnetization and entanglement jumps. Upward jumps in the magne-
tization give rise to downward jumps in the amount of entanglement. Also, magnetization
and entanglement plateaus coexist in the same range of magnetic fields. Later studies
established the general validity of these results [24), 25, 26]. In this section, we show that
the quantum complementarity relation (Eq. (5)) provides a natural explanation for the
correlated changes in the amounts of magnetization and entanglement as a function of the
magnetic field. We illustrate this in the case of a spin-1 dimer compound [Niy (Medpt)s(pu—
0x)(H0)5](ClO4)2.2H50 (Medpt = methyl — bis(3 — aminopropyl)amine) which exhibits
magnetization plateaus at sufficiently low temperatures [20]. The Hamiltonian describing
the spin-1 dimer is

Hy=J(S7S5+ SYSY) +0J (S7S3) +d [(S7)° + (S5)°] + B (Si + 85) (21)
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FIG. 5. Plots of P, @ and P + () as a function of % in the case of a spin-1 dimer
(0=1,d=0and 5J =3.)

where ¢ is the exchange anisotropy parameter, d labels the axial zero-field splitting pa-
rameter and B the strength of the external magnetic field. The negative (positive) sign of
the parameter d corresponds to an easy-axis (easy-plane) single ion anisotropy. If the spin
system is entangled, a sharp increase in the magnetization (obtained at low temperatures)
is accompanied by a sharp decrease in the amount of entanglement so that the complemen-
tarity relation is not violated. At T" = 0, the sharp changes become the ‘jumps’ associated
with first order quantum phase transitions. As 7T increases, the changes occur more gradu-
ally as a function of the magnetic field. In an entangled system, the magnetization plateaus
are accompanied by entanglement plateaus and the complementarity relation continues to
be valid. To illustrate this, we first calculate the eigenvalues and the eigenvectors of the
dimer Hamiltonian Hy (Eq. (37)). These are displayed in Appendix B. The magnetization
M (only the z-component is non-zero) and x,, the z-component of the susceptibility are
derived from

_toz ~_OM
~ 5705 7 9B

The susceptibility components x, and x, are determined from Eq. (3) with (ST), (S7), (S%)
and (S¥) = 0 since the magnetic field is in the z-direction. One can now calculate the terms
P and @ (Eq. (6)) appearing in the quantum complementarity relation given by Eq. (5).

Figure 5 shows the plots of P, () and P + @) as a function of % for 0 =1,d =0
and §J = 3. Figure 6 shows the appearance of plateaus as the temperature is lowered
(BJ = 20). Note that a sharp increase in P is accompanied by a sharp decrease in Q.
Plateaus in P and ) occur in the same range of magnetic fields. At sufficiently low
temperatures, the two-step plateau structure is still obtained for non-zero values of d. The
intermediate plateau has a lesser width for negative values of d and disappears at d = —1.
At this point, ) is < 0 throughout the range of % values so that the spin system is not

(22)
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FIG. 6. Plots of P, @ and P + () as a function of % in the case of a spin-1 dimer
(0=1,d=0and gJ = 20.)

entangled. If d is changed from d = —1 to d = +1, the two-step structure in both P and @
is recovered and the amount of entanglement is no longer zero. The easy-plane single ion
anisotropy (d > 0) is found to be favourable towards plateau formation in both P and Q.
The changes in P and () are correlated so that the complementarity relation P+ Q < 1
is always valid. A two-step magnetization curve has been experimentally observed in
the spin-1 nickel compound mentioned earlier [20]. Theoretical calculations, based on a
description of the compound as a collection of independent spin-1 dimers, give a good fit to
the experimental data on the magnetization and susceptibility. The exchange anisotropy
parameter 0 has been taken as 1 and the single ion anisotropy is of the easy-axis type
(d < 0). Magnetization experiments have been carried out for the external magnetic field
parallel to the z and x directions. In both the cases, a two-plateau structure has been seen
in the magnetization versus field curves. In the latter case, the plateau structure is found to
be more prominent. Our theoretical calculations suggest that the magnetization plateaus
exhibited by the spin-1 nickel compound are accompanied by entanglement plateaus.

V. SUMMARY AND DISCUSSION

In this paper, we study some special features of entangled small spin clusters. We first
consider the § = % AFM linear chain tetramer compound, NaCuAsO,, described by
the Heisenberg exchange interaction Hamiltonian with inhomogeneous exchange coupling
strengths (Eq. (7)) and show that the entanglement gap temperature, T, has a non-
monotonic dependence on the exchange coupling inhomogeneity parameter .. The critical
entanglement temperature, 755, obtained by using the susceptibility as an EW, has a mono-
tonic dependence on a. We next determine how the entanglement gap temperature, T,
varies as a function of S in the cases of small spin clusters like a dimer, a trimer and a

11



tetrahedron. While Ty increases with S in each case, the scaled entanglement gap temper-
ature tp decreases as S increases and goes to zero S — oco. The physical interpretation is
that the entangled states have a small contribution to the total energy range in the limit
of large S. The general applicability of this result for spin clusters without “all-to-all” spin
couplings should be investigated. Toth [TT] has considered a Hamiltonian with “all-to-all”
couplings between N spin—% particles. The entanglement gap temperature T is found to
increase as NN increases but tp tends to a constant value as N becomes large. Dowling
et al. [I2| have given examples of Hamiltonians describing bipartite systems for which ¢g
increases without bound as the dimension of the Hilbert space associated with the subsys-
tems increases. In our case, with increasing S, the Hilbert space of the system is enlarged
but tg decreases as a function of S and goes to zero in the limit S — co. This is so since
Tg has a linear variation with S (Fig. 6) and FEj,; varies as S? in the large S limit.
Lastly, we study a spin-1 dimer compound as an illustration of the quantum comple-
mentarity relation. In experiments, the compound exhibits low-temperature magnetization
plateaus. Our theoretical calculations reproduce these plateaus and further show that if the
system is entangled, the magnetization plateaus coexist with the entanglement plateaus.
Successive plateaus are connected by sharp changes in the magnetization and the amount
of entanglement. The increase in one quantity is compensated by a decrease in the other
quantity so that the complementarity relation is not violated. A large number of AFM
compounds exhibit the phenomenon of magnetization plateaus [27]. If these systems are
entangled at the temperatures for which magnetization plateaus are observed, one can
predict the coexistence of magnetization and entanglement plateaus in such systems. The
Oshikawa, Yamanaka, Affleck (OYA) [28] theorem provides the condition for the occur-
rence of magnetization plateaus in quasi-1d AFM systems. Magnetization plateaus have
also been observed in a two-dimensional S=1 AFM system SrCusy (BOs),, thus extending
the scope for the applicability of the OYA theorem. It will be of interest to establish a
connection between the OYA theorem and the quantum complementarity relation so that
the conditions for the simultaneous appearance of the magnetization and the entanglement
plateaus are clearly identified.
Acknowledgment. Amit Tribedi is supported by the Council of Scientific and Industrial
Research, India under Grant No. 9/15 (306)/ 2004-EMR-1.
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Appendix A: Eigenvalues and eigenvectors of linear chain
tetramer

The Hamiltonian describing the linear chain tetramer is given in Eq. (7). The total spin
of the tetramer is S™'. The first index in the subscript of an eigenvector refers to the
eigenvalue and the second to S™, the z-component of the total spin.

Stot = 2.

ISES (% + %) J (A1)

Y12 = [1117)
i =S T + [TTLT) + [T111)
Yro= 95 (ITTLL) + [TLTL) + [T + [T + LD +1L111) - (42)

Yr-1 =5 (ITLLL) + 1UTLD) + [LUTL) + [LLT))
Y12 = [L1L)

Stot =1 - )
o
Ey=(—=+- A
= (24D

Por =2 (|LTTT) = [TLT1T) = [T111) + [1111))
Yo—1 =5 (LTI = [TLIT) = [TTLT) + 1T111))  (A4)
a0 = 25 (ITLLT) = [1111))

By = (—% + %\/1 Taf)J  (A45)

Yo = 7 (11111 = 11111) = (@ = VI +aZ) (ITU11) = [1111))
U1 = 3 (ITLL) = 1L = (e = VI+a2) (UL = [LITD)  (46)
Us0 = 55 (ITTLL) = [LLT1) = (& = 1+ &) (11410 — [L1LT))

= (-2 %\/1 TR (A7)

Yan = 5 (ILT11) = 11111) = (@ + VI+a2) (I1111) = [1111))
Va1 = 5 (1ML = LD = (@ +VI+a2) (ITL) = [LITD)  (48)
a0 = 7 (ITTL) = LT = (24 1+ ) (11110 = [L111))

Stot = ()
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Y50 = Nig) (ar [TTLL) + b0 [TITL) + e [TLT) +di [LTTL) + e [LTIT) + f1 [LITT)) (A10)

1 « a a?
EG—{—<§+Z>— 1—§+Z}J (A11)

¢%x)=:}%g(az|TTll>4‘b2|TlTl>4‘C2|TllT>+‘d2|lTTl>4‘62|lTlT>4‘f§|llTT>) (412)

Whereal:f1:a2:f2:1,blz—%—l—Q\/i—i—l—%:el,bg:— -2 i—i—l—%:

€2, Cl:_1+%_2m:dl’ 02:_1+%+2\/m:d2

Ny, Ny, N3, Ny, N5 and Ng are the appropriate normalization constants.

QN

Appendix B: Eigenvalues and eigenvectors of the spin-1
dimer

The dimer Hamiltonian Hy is given by Eq. (21). The basis functions are represented
as [S7,55) with S7 = £1,0 and S = £1,0. The eigenstates and the eigenvalues are
described by ¢y, m and A, ,,, where ‘n’ and ‘m’ refer to the total spin S™" of the dimer and
its z-component respectively.

Stot = 2
¢27:|:2 - |j:1,:t1>
)\g,ig - 5J + 2d :l: QB (Bl>
— 1
P21 = 5 (J£1,0) +10,£1)) (B2)
)\2,:|:1 - J + d:l: B
920 =5 (An 1, =1) + =1L 1) V240,00 pay

Ao=-2+d+R

Stot =1

¢1,:|:1 = % (|i1a0> - |0ai1>)

>\17:|:1 == —J + d :l: B (B4>
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P10 = % (J1, =1) — [=1,1))

Ao 1= —0J +2d (B5)
Stot =0
d00 =3 (A (11, =1) + [=1,1) = V24, [0,0) g
Moo=~ +d— R
where

= [(%‘] —d)’ +2J2F
(?) (B7)

1

8J 5

R— 7+d 2
R

AP
A
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