31,793 research outputs found

    Investigating the tetraquark structure of the new mesons

    Get PDF
    Using the QCD sum rule approach we investigate the possible four-quark structure of the recently observed mesons DsJ+(2317)D_{sJ}^{+}(2317), firstly observed by BaBaR, X(3872), firstly observed by BELLE and D0∗0(2308)D_0^{*0}(2308) observed by BELLE. We use diquark-antidiquark currents and work in full QCD, without relying on 1/mc1/m_c expansion. Our results indicate that a four-quark structure is acceptable for these mesons.Comment: 4 pages 1 eps figure, proceedings of the XVIII Workshop on Hadronic Interactions (RETINHA-18) Sao Paulo-S

    Transforming squeezed light into a large amplitude coherent state superposition

    Full text link
    A quantum superposition of two coherent states of light with small amplitude can be obtained by subtracting a photon from a squeezed vacuum state. In experiments this preparation can be made conditioned on the detection of a photon in the field from a squeezed light source. We propose and analyze an extended measurement strategy which allows generation of high fidelity coherent state superpositions with larger amplitude.Comment: 6 pages, 4 figures, v2: published versio

    On the energy dependence of the D^+/D^- production asymmetry

    Get PDF
    In this paper we discuss the origin of the asymmetry present in D meson production and its energy dependence. In particular, we have applied the meson cloud model to calculate the asymmetries in D^-/D^+ meson production in high energy p-p collisions and find a good agreement with recent LHCb data. Although small, this non-vanishing asymmetry may shed light on the role played by the charm meson cloud of the proton.Comment: 8 pages, 8 figures. arXiv admin note: text overlap with arXiv:hep-ph/000927

    Entanglement properties in the Inhomogeneous Tavis-Cummings model

    Get PDF
    In this work we study the properties of the atomic entanglement in the eigenstates spectrum of the inhomogeneous Tavis-Cummings Model. The inhomogeneity is present in the coupling among the atoms with quantum electromagnetic field. We calculate analytical expressions for the concurrence and we found that this exhibits a strong dependence on the inhomogeneity.Comment: 5 pages, 5 figure

    One qubit almost completely reveals the dynamics of two

    Get PDF
    From the time dependence of states of one of them, the dynamics of two interacting qubits is determined to be one of two possibilities that differ only by a change of signs of parameters in the Hamiltonian. The only exception is a simple particular case where several parameters in the Hamiltonian are zero and one of the remaining nonzero parameters has no effect on the time dependence of states of the one qubit. The mean values that describe the initial state of the other qubit and of the correlations between the two qubits also are generally determined to within a change of signs by the time dependence of states of the one qubit, but with many more exceptions. An example demonstrates all the results. Feedback in the equations of motion that allows time dependence in a subsystem to determine the dynamics of the larger system can occur in both classical and quantum mechanics. The role of quantum mechanics here is just to identify qubits as the simplest objects to consider and specify the form that equations of motion for two interacting qubits can take.Comment: 6 pages with new and updated materia

    Valence Bond Solids for Quantum Computation

    Get PDF
    Cluster states are entangled multipartite states which enable to do universal quantum computation with local measurements only. We show that these states have a very simple interpretation in terms of valence bond solids, which allows to understand their entanglement properties in a transparent way. This allows to bridge the gap between the differences of the measurement-based proposals for quantum computing, and we will discuss several features and possible extensions
    • 

    corecore