154 research outputs found

    Sulfide Precipitation in Wastewater at Short Timescales

    Get PDF
    Abatement of sulfides in sewer systems using iron salts is a widely used strategy. When dosing at the end of a pumping main, the reaction kinetics of sulfide precipitation becomes important. Traditionally the reaction has been assumed to be rapid or even instantaneous. This work shows that this is not the case for sulfide precipitation by ferric iron. Instead, the reaction time was found to be on a timescale where it must be considered when performing end-of-pipe treatment. For real wastewaters at pH 7, a stoichiometric ratio around 14 mol Fe(II) (mol S(−II))−1 was obtained after 1.5 s, while the ratio dropped to about 5 mol Fe(II) (mol S(−II))−1 after 30 s. Equilibrium calculations yielded a theoretic ratio of 2 mol Fe(II) (mol S(−II))−1, indicating that the process had not equilibrated within the span of the experiment. Correspondingly, the highest sulfide conversion only reached 60%. These findings differed significantly from what has been demonstrated in previous studies and what is attained from theoretical equilibrium conditions

    Relationship between Polycyclic Aromatic Hydrocarbons in Sediments and Invertebrates of Natural and Artificial Stormwater Retention Ponds

    Get PDF
    Sediments and invertebrates were sampled from 9 stormwater retention ponds (SWRPs) and 11 natural, shallow lakes in Denmark. Samples were analyzed for 13 polycyclic aromatic hydrocarbons (PAHs). The SWRPs received urban and highway runoff from various types of drainage areas and the lakes were located in areas of various land uses. Comparing PAHs in the sediments of the SWRPs and the lakes, it was found that levels of total PAH were similar in the two aquatic systems, with median values of 0.94 and 0.63 mg·(kg·DM)−1 in sediments of SWRPs and lakes, respectively. However, the SWRP sediments tended to have higher concentrations of high-molecular-weight PAHs than the lakes. A similar pattern was seen for PAHs accumulated in invertebrates where the median of total PAH was 2.8 and 2.1 mg·(kg·DM)−1 for SWRPs and lakes, respectively. Principal component analysis on the PAH distribution in the sediments and invertebrates showed that ponds receiving highway runoff clustered with lakes in forests and farmland. The same was the case for some of the ponds receiving runoff from residential areas. Overall, results showed that sediment PAH levels in all SWRPs receiving runoff from highways were similar to the levels found in some of the investigated natural, shallow lakes, as were the sediment PAH levels from some of the residential SWRPs. Furthermore, there was no systematic trend that one type of water body exceeded environmental quality standards (EQS) values more often than others. Together this indicates that at least some SWRPs can sustain an invertebrate ecosystem without the organisms experiencing higher bioaccumulation of PAHs then what is the case in shallow lakes of the same region

    What is hiding below the surface – MPs including TWP in an urban lake

    Get PDF
    Inland lakes play an important role as habitats for local species and are often essential drinking water reservoirs. However, there is limited information about the presence of microplastics (MPs) in these water bodies. Thirteen sediment samples were collected across a Danish urban lake to map MPs, including tyre wear particles (TWP). The lower size detection limit was 10 µm. MPs were quantified as counts, size, and polymer type by Fourier-transform infrared microspectroscopy (µFTIR) and mass estimated from the 2D projections of the MPs. As TWP cannot be determined by µFTIR, counts and sizes could not be quantified by this technique. Instead, TWP mass was determined by pyrolysis gas chromatography mass spectrometry (Py-GC/MS). The average MP abundance was 279 mg kg−1 (µFTIR), of which 19 mg kg−1 (Py-GC/MS) were TWP. For MPs other than tyre wear, the average MP count concentration was 11,312 counts kg−1. Urban runoff from combined sewer overflows and separate stormwater outlets combined with outflow from a wastewater treatment plant were potential point sources. The spatial variation was substantial, with concentrations varying several orders of magnitude. There was no pattern in concentration across the lake, and the distribution of high and low values seemed random. This indicates that large sampling campaigns encompassing the entire lake are key to an accurate quantification. No preferential spatial trend in polymer characteristics was identified. For MPs other than TWP, the size of buoyant and non-buoyant polymers showed no significant difference across the lake, suggesting that the same processes brought them to the sediment, regardless of their density. Moreover, MP abundance was not correlated to sediment properties, further indicating a random occurrence of MPs in the lake sediments. These findings shed light on the occurrence and distribution of MPs, including TWP, in an inland lake, improving the basis for making mitigation decisions.</p

    Bio‐crude production through recycling of pretreated aqueous phase via activated carbon

    Get PDF
    The management and optimization of the aqueous phase are the major challenges that hinder the promotion of hydrothermal liquefaction (HTL) technology on a commercial scale. Recently, many studies reported about the accumulation of the N-content in the bio-crude with continuous recycling of the aqueous phase from high protein-containing biomass. In the present study, sewage sludge was processed at 350 °C in an autoclave. The produced aqueous phase was treated with activated carbon, and its subsequent recycling effect on the properties of the bio-crude and aqueous phase was investigated. By contacting the aqueous phase with activated carbon, 38–43% of the total nitrogen was removed from the aqueous phase. After applying the treated aqueous phase recycling, the energy recovery of the bio-crude increased from 50 to 61% after three rounds of recycling. From overall carbon/nitrogen recoveries, 50 to 56% of the carbon was transferred to the bio-crude phase and more than 50% of the nitrogen remained in the aqueous phase. The aqueous phase contained mostly of N&O-heterocyclic compounds, small chain organic acids, and amides. ICP-AES analysis showed that more than 80% of the inorganic elements were concentrated into the solid phase
    corecore