878 research outputs found

    Effects of viscous dissipation and boundary conditions on forced convection in a channel occupied by a saturated porous medium

    Get PDF
    Forced convection with viscous dissipation in a parallel plate channel filled by a saturated porous medium is investigated numerically. Three different viscous dissipation models are examined. Two different sets of wall conditions are considered: isothermal and isoflux. Analytical expressions are also presented for the asymptotic temperature profile and the asymptotic Nusselt number. With isothermal walls, the Brinkman number significantly influences the developing Nusselt number but not the asymptotic one. At constant wall heat flux, both the developing and the asymptotic Nusselt numbers are affected by the value of the Brinkman number. The Nusselt number is sensitive to the porous medium shape factor under all conditions considered

    Effects of viscous dissipation and boundary conditions on forced convection in a channel occupied by a saturated porous medium

    Get PDF
    Forced convection with viscous dissipation in a parallel plate channel filled by a saturated porous medium is investigated numerically. Three different viscous dissipation models are examined. Two different sets of wall conditions are considered: isothermal and isoflux. Analytical expressions are also presented for the asymptotic temperature profile and the asymptotic Nusselt number. With isothermal walls, the Brinkman number significantly influences the developing Nusselt number but not the asymptotic one. At constant wall heat flux, both the developing and the asymptotic Nusselt numbers are affected by the value of the Brinkman number. The Nusselt number is sensitive to the porous medium shape factor under all conditions considered

    The Dynamics of Enduring Property Relationships in Land

    Get PDF
    This article proposes a new way of looking at property relationships that will enrich our understanding of how they operate. It focuses on property rights in land which are consensual in origin, although this approach could usefully be applied both to non-consensual property relationships and to other property types. Recognising both the temporal and spatial dimensions of land, the dynamics approach reflects the fact that most property relationships are lived relationships, affected by changing patterns and understandings of spatial use, relationship needs, economic realities, opportunities, technical innovations, and so on. Although evolving responsively to accommodate changing uses and new rights-holders, these relationships are nevertheless sustained and enduring. The dynamics lens acknowledges the diverse range of legal, regulatory, social and commercial norms that shape property relations. Our approach also explores how far the enduring, yet dynamic, nature of property relations is taken into account by a range of decision-makers

    Oligomeric states in sodium ion-dependent regulation of cyanobacterial histidine kinase-2

    Get PDF
    Two-component signal transduction systems (TCSs) consist of sensor histidine kinases and response regulators. TCSs mediate adaptation to environmental changes in bacteria, plants, fungi and protists. Histidine kinase 2 (Hik2) is a sensor histidine kinase found in all known cyanobacteria and as chloroplast sensor kinase in eukaryotic algae and plants. Sodium ions have been shown to inhibit the autophosphorylation activity of Hik2 with precedes phosphoryl transfer to response regulators, but the mechanism of inhibition has not been determined. We report on the mechanism of Hik2 activation and inactivation probed by chemical cross-linking and size exclusion chromatography together with direct visualisation of the kinase using negative-stain transmission electron microscopy of single particles. We show that the functional form of Hik2 is a higher-order oligomer such as a hexamer or octamer. Increased NaCl concentration converts the active hexamer into an inactive tetramer. The action of NaCl appears to be confined to the Hik2 kinase domain

    Effect of a finite external heat transfer coefficient on the Darcy-Benard instability in a vertical porous cylinder

    Get PDF
    The onset of thermal convection in a vertical porous cylinder is studied by considering the heating from below and the cooling from above as caused by external forced convection processes. These processes are parametrised through a finite Biot number, and hence through third-kind, or Robin, temperature conditions imposed on the lower and upper boundaries of the cylinder. Both the horizontal plane boundaries and the cylindrical sidewall are assumed to be impermeable; the sidewall is modelled as a thermally insulated boundary. The linear stability analysis is carried out by studying separable normal modes, and the principle of exchange of stabilities is proved. It is shown that the Biot number does not affect the ordering of the instability modes that, when the radius-to-height aspect ratio increases, are displayed in sequence at the onset of convection. On the other hand, the Biot number plays a central role in determining the transition aspect ratios from one mode to its follower. In the limit of a vanishingly small Biot number, just the first (non-axisymmetric) mode is displayed at the onset of convection, for every value of the aspect ratio. (C) 2013 American Institute of Physic

    Incompressible flow in porous media with fractional diffusion

    Get PDF
    In this paper we study the heat transfer with a general fractional diffusion term of an incompressible fluid in a porous medium governed by Darcy's law. We show formation of singularities with infinite energy and for finite energy we obtain existence and uniqueness results of strong solutions for the sub-critical and critical cases. We prove global existence of weak solutions for different cases. Moreover, we obtain the decay of the solution in LpL^p, for any p2p\geq2, and the asymptotic behavior is shown. Finally, we prove the existence of an attractor in a weak sense and, for the sub-critical dissipative case with α(1,2]\alpha\in (1,2], we obtain the existence of the global attractor for the solutions in the space HsH^s for any s>(N/2)+1αs > (N/2)+1-\alpha

    The effect of an embedded solid block on the onset of convection in a porous cavity

    Get PDF
    Purpose – The purpose of this paper is to determine how the presence of an embedded, centrally placed, solid but heat-conducting block affects the onset and development of Darcy-Bénard convection. Design/methodology/approach – Steady solutions are obtained using finite difference methods with SOR as the smoother. A detailed presentation is given of how the interface conditions are modelled, and how a continuity of pressure argument is used to determine the value of the streamfunction on the solid block. Findings – The presence of the block affects strongly both the onset of convection and the nonlinear properties such as the mean Nusselt number and the strength of the fluid circulation. The smallest possible critical Darcy-Rayleigh is found to be 22.0152, which is smaller than 4π2, the value when the block is absent. Research limitations/implications – The Darcy-Rayleigh number is restricted to values at or below 200, which is five times the critical value without a solid block, but the size and conductivity of the block vary between all admissible values. Originality/value – This is the first investigation of the effect of internal obstacles on Darcy-Bénard convection. </jats:sec

    On the boundary layer structure near a highly permeable porous interface

    Get PDF
    The method of matched asymptotic expansions is used to study the canonical problem of steady laminar flow through a narrow two-dimensional channel blocked by a tight-fitting finite-length highly permeable porous obstacle. We investigate the behaviour of the local flow close to the interface between the single-phase and porous regions (governed by the incompressible Navier--Stokes and Darcy flow equations, respectively). We solve for the flow in these inner regions in the limits of low and high Reynolds number, facilitating an understanding of the nature of the transition from Poiseuille to plug to Poiseuille flow in each of these limits. Significant analytical progress is made in the high-Reynolds-number limit, and we explore in detail the rich boundary layer structure that occurs. We derive general results for the interfacial stress and for the conditions that couple the flow in the outer regions away from the interface. We consider the three-dimensional generalization to unsteady laminar flow through and around a tight-fitting highly permeable cylindrical porous obstacle within a Hele-Shaw cell. For the high-Reynolds-number limit, we give the coupling conditions and interfacial stress in terms of the outer flow variables, allowing information from a nonlinear three-dimensional problem to be obtained by solving a linear two-dimensional problem. Finally, we illustrate the utility of our analysis by considering the specific example of time-dependent forced far-field flow in a Hele-Shaw cell containing a porous cylinder with a circular cross-section. We determine the internal stress within the porous obstacle, which is key for tissue engineering applications, and the interfacial stress on the boundary of the porous obstacle, which has applications to biofilm erosion. In the high-Reynolds-number limit, we demonstrate that the fluid inertia can result in the cylinder experiencing a time-independent net force, even when the far-field forcing is periodic with zero mean

    Plants lacking the main light-harvesting complex retain photosystem II macro-organization

    Get PDF
    Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts. Several light-harvesting antenna complexes are organized precisely in the PSII macrostructure—the major trimeric complexes (LHCII) that bind 70% of PSII chlorophyll and three minor monomeric complexes—which together form PSII supercomplexes. The antenna complexes are essential for collecting sunlight and regulating photosynthesis, but the relationship between these functions and their molecular architecture is unresolved. Here we report that antisense Arabidopsis plants lacking the proteins that form LHCII trimers have PSII supercomplexes with almost identical abundance and structure to those found in wild-type plants. The place of LHCII is taken by a normally minor and monomeric complex, CP26, which is synthesized in large amounts and organized into trimers. Trimerization is clearly not a specific attribute of LHCII. Our results highlight the importance of the PSII macrostructure: in the absence of one of its main components, another protein is recruited to allow it to assemble and function

    Onset of Surface-Tension-Driven Benard Convection

    Full text link
    Experiments with shadowgraph visualization reveal a subcritical transition to a hexagonal convection pattern in thin liquid layers that have a free upper surface and are heated from below. The measured critical Marangoni number (84) and observation of hysteresis (3%) agree with theory. In some experiments, imperfect bifurcation is observed and is attributed to deterministic forcing caused in part by the lateral boundaries in the experiment.Comment: 4 pages. The RevTeX file has a macro allowing various styles. The appropriate style is "mypprint" which is the defaul
    corecore