755 research outputs found

    Correlations between deposition parameters and structural and electrical properties of YBa2Cu3O7–delta thin films grown in situ by sequential ion beam sputtering

    Get PDF
    We have studied the correlations between deposition parameters and structural and electrical properties of YBa2Cu3O7–delta thin films grown in situ by sequential ion beam sputtering. Epitaxial, c-axis oriented YBa2Cu3O7–delta films were grown both on (100) SrTiO3 and on (100) MgO substrates following the stacking sequence of the ``123'' compound, with deposited layer thicknesses nominally equal to 1 monolayer. The c-axis lattice parameters obtained were larger than the corresponding lattice parameter in bulk samples, even after low-temperature anneals in O2. The transition temperatures were found to decrease with the enlargement of the c-axis lattice parameter. A clear correlation between growth temperature and the value of the c-axis lattice parameter was observed. The c-axis lattice parameter and the x-ray linewidth of Bragg reflections with the G vector along the c-axis were also found to be correlated. This suggests a relationship between the c-axis lattice parameter and the structural coherence of the epitaxial films

    A Comparison of Thin-Client Computing Architectures

    Get PDF
    Thin-client computing offers the promise of easier-to-maintain computational services with reduced total cost of ownership. The recent and growing popularity of thin-client systems makes it important to develop techniques for analyzing and comparing their performance, to assess the general feasibility of the thin-client computing model, and to determine the factors that govern the performance of these architectures. To assess the viability of the thin-client computing model, we measured the performance of five popular thin-client platforms running over a wide range of network access bandwidths. Our results show that current thin-client solutions generally work well in a LAN environment, but their performance degrades significantly when they are used in today's broadband environments. We also find that the efficiency of the thin-client protocols varies widely. In some cases, the efficiency of the thin client protocol for web applications is within a factor of two of standard web protocols, while others are 30 times more inefficient. We analyze the differences in the various approaches and explain the impact of the underlying remote display protocols on overall performance

    Reply to the comment by D. Kreimer and E. Mielke

    Get PDF
    We respond to the comment by Kreimer et. al. about the torsional contribution to the chiral anomaly in curved spacetimes. We discuss their claims and refute its main conclusion.Comment: 9 pages, revte

    Spinorial Field and Lyra Geometry

    Full text link
    The Dirac field is studied in a Lyra space-time background by means of the classical Schwinger Variational Principle. We obtain the equations of motion, establish the conservation laws, and get a scale relation relating the energy-momentum and spin tensors. Such scale relation is an intrinsic property for matter fields in Lyra background.Comment: 10 pages. Some misprints correcte

    Optical-conductivity sum rule in cuprates and unconventional charge density waves: a short review

    Get PDF
    We begin with an overview of the experimental results for the temperature and doping dependences of the optical-conductivity spectral weight in cuprate superconductors across the whole phase diagram. Then we discuss recent attempts to explain the observed behavior of the spectral weight using reduced and full models with unconventional dx2y2d_{x^2-y^2} charge-density waves.Comment: 17 pages, RevTeX4, 4 EPS figures; Invited paper for a special issue of Low Temperature Physics dedicated to the 20th anniversary of HTS

    Locally Weyl invariant massless bosonic and fermionic spin-1/2 action in the (Wn(4),g)\bf (W_{n(4)},g) and (U4,g)\bf (U_{4},g) space-times

    Full text link
    We search for a real bosonic and fermionic action in four dimensions which both remain invariant under local Weyl transformations in the presence of non-metricity and contortion tensor. In the presence of the non-metricity tensor the investigation is extended to Weyl (Wn,g)(W_n, g) space-time while when the torsion is encountered we are restricted to the Riemann-Cartan (U4,g)(U_4, g) space-time. Our results hold for a subgroup of the Weyl-Cartan (Y4,g)(Y_4, g) space-time and we also calculate extra contributions to the conformal gravity.Comment: 16 page

    Homeostasis Meets Motivation in the Battle to Control Food Intake.

    Get PDF
    Signals of energy homeostasis interact closely with neural circuits of motivation to control food intake. An emerging hypothesis is that the transition to maladaptive feeding behavior seen in eating disorders or obesity may arise from dysregulation of these interactions. Focusing on key brain regions involved in the control of food intake (ventral tegmental area, striatum, hypothalamus, and thalamus), we describe how activity of specific cell types embedded within these regions can influence distinct components of motivated feeding behavior. We review how signals of energy homeostasis interact with these regions to influence motivated behavioral output and present evidence that experience-dependent neural adaptations in key feeding circuits may represent cellular correlates of impaired food intake control. Future research into mechanisms that restore the balance of control between signals of homeostasis and motivated feeding behavior may inspire new treatment options for eating disorders and obesity
    corecore