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Abstract
P2P file sharing provides a powerful content distribution
model by leveraging users’ computing and bandwidth re-
sources. However, companies have been reluctant to rely on
P2P systems for paid content distribution due to their in-
ability to limit the exploitation of these systems for free file
sharing. We present TP2, a system that combines the more
cost-effective and scalable distribution capabilities of P2P
systems with a level of trust and control over content distri-
bution similar to direct download content delivery networks.
TP2 uses two key mechanisms that can be layered on top of
existing P2P systems. First, it provides strong authentica-
tion to prevent free file sharing in the system. Second, it in-
troduces a new notion of trusted auditors to detect and limit
malicious attempts to gain information about participants in
the system to facilitate additional out-of-band free file shar-
ing. We analyze TP2 by modeling it as a novel game between
malicious users who try to form free file sharing clusters and
trusted auditors who curb the growth of such clusters. Our
analysis shows that a small fraction of trusted auditors is suf-
ficient to protect the P2P system against unauthorized file
sharing. Using a simple economic model, we further show
that TP2 provides a more cost-effective content distribution
solution, resulting in higher profits for a content provider
even in the presence of a large percentage of malicious users.
Finally, we implemented TP2 on top of BitTorrent and use
PlanetLab to show that our system can provide trusted P2P
file sharing with negligible performance overhead.

1. INTRODUCTION
Peer-to-Peer (P2P) file sharing is a powerful and cost-

effective content distribution model due to its ability to
leverage the participating users’ uplink bandwidth. Popu-
lar examples include BitTorrent [4], Napster [17] and Kazaa
[13]). However, content providers that offer copyrighted files
online typically rely on direct download to distribute the
paid content. Companies such as Apple iTunes [12], Sony,
and Time Warner among others, distribute content either
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from their website directly or via contracted content delivery
networks (CDNs) such as Akamai [2]. These companies are
hesitant to rely on currently available P2P systems for paid
content distribution as free-of-charge file sharing is inherent
in current P2P models, as evidenced by the proliferation of
file sharing communities (e.g., Xbox-sky [23] and Red Skunk
Tracker [20]) and of search engines that facilitate the identifi-
cation of P2P networks which potentially share such content
(e.g., TorrentSpy [21] and PirateBay [18]). However, the use
of P2P techniques has the potential to significantly reduce
the distribution costs for the content providers, because of
the lower bandwidth capacity/use costs, and/or lower Con-
tent Delivery Network (CDN) fees. Thus, P2P represents
a profitable opportunity for distributing paid content. For
P2P techniques to be adopted for authorized paid content
distribution, the system must provide a cost/benefit trade-
off that is better (i.e., profit is higher) than in the direct
download case.

We present TP2, a system that provides the cost-effective
distribution capabilities of a decentralized P2P approach
while maintaining sufficient trust and security parameters
for paid content distribution. TP2is a layer that can be
added to existing P2P file sharing systems to support paid-
content distribution by imposing significant and configurable
barriers against malicious exploitation of the system for free
content sharing. First, it adds strong authentication and au-
thorization to a P2P system such that users can only down-
load content after payment. Second, it introduces the no-
tion of trusted auditors (TAs) into the system. TAs are P2P
nodes controlled by the content provider. Their purpose
is to detect any type of malicious activity, including devia-
tions from the normal protocol implementation, port prob-
ing, malformed messages, attempts by unauthorized nodes
to access content without proper credentials, and any effort
to create an out-of-band communication with another node
that is participating in the system. TAs are our sentinels:
they can assume the role of a source, a destination or even of
a malicious user luring other malicious nodes to either probe
them or to respond to their probes. When they detect ma-
licious behavior, a variety of measures may be taken. In
the simplest case, offending peers are banned from the P2P
system and moved to another, isolated system for all future
downloading, where they must pay for the bandwidth they
consume.

TP2 provides the following key properties:

•Content Protection. Our system enforces strong authenti-
cation and encryption for all P2P communications, which
inhibits unauthorized nodes from connecting to other P2P
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participants. Since a malicious node cannot obtain free con-
tent from another, non-malicious participant, its only hope
is to discover other malicious nodes who are willing to trade
with her out-of-band.

•Inherent Trust. TAs bound the ability of malicious nodes
to discover other malicious nodes for illegal file sharing and
trading. As a result, the content provider has trust guaran-
tees that the P2P system will not be exploited by malicious
nodes. Just like in a direct-download system, we cannot
prevent a user who legally downloads content from sharing
it out of band. However, with the use of strong authenti-
cation and TAs, we can protect the P2P system itself from
being exploited for free content downloads or information
scavenging for future illegal trading.

•Bandwidth Savings. Our system leverages P2P bandwidth
for file downloads and thus provides tremendous scalable
bandwidth and infrastructure savings. While the content
provider needs to provision bandwidth for the TAs, we show
that TAs are only a small fraction of the overall P2P network
and thus the total bandwidth conservation is still significant.

We analyze TP2 by modeling it as a novel game between
malicious users who try to form free file-sharing clusters and
trusted auditors who curb the growth of such clusters. Our
analysis shows that even a small fraction of trusted auditors
is sufficient to protect the P2P system against unauthorized
file sharing. Even assuming that 50% of the P2P users in
the system are maliciously attempting to form clusters with
other users, and 10 times as many malicious users as TAs,
TP2 can detect 99% of the malicious users in steady state
operation, can limit 80% of the malicious users from form-
ing clusters, and only 10% of the malicious users are able
to achieve a cluster with more than one other user. If we
increase the number of TAs such that there are only 5 times
as many malicious users as TAs, TP2 can limit 90% of the
malicious users from forming clusters, and less than 3% of
the malicious users are able to form a cluster with more than
one other user.

Using a simple economic model, we further show that TP2
provides a more cost-effective content distribution solution,
resulting in higher profits for a content provider even in the
presence of a large percentage of malicious users. Even as-
suming that 50% of the P2P users in the system are mali-
ciously attempting to form clusters with other users, TP2
achieves more than 80% higher profit per download than a
direct download system assuming conservative profit num-
bers and bandwidth costs. Furthermore, accounting for the
bandwidth costs of TAs and the lost revenue due to mali-
cious users, TP2 achieves more than 90% of the potential
profit of a pure P2P system with zero malicious users.

We implemented TP2 on top of BitTorrent to demonstrate
that our system can provide its functionality in an existing,
widely-used P2P system with only modest modifications.
We deployed our TP2 enhanced BitTorrent prototype on
PlanetLab and present some experimental data comparing
its performance to an unmodified BitTorrent system run-
ning on the same PlanetLab nodes. Our results show that
TP2 can provide its trusted paid content distribution func-
tionality while imposing negligible performance overhead.

2. RELATED WORK
As broadband Internet access becomes more prevalent,

digital content stores such as Apple Itunes and Amazon have

begun to distribute richer digital content over the Internet,
such as TV series episodes and full-length movies. Since each
download requires significant bandwidth, these stores typ-
ically contract Content Delivery Networks (CDNs) to dis-
tribute their content. Commercial CDNs include Akamai
[2], Limelight [15] and VitalStream [22]. CDNs typically op-
erate thousands of distributed servers deployed in various
networks and ISPs. In addition to offering vast amount of
scalable bandwidth, CDNs can enforce appropriate security
measures on behalf of a digital store, such as authorization
of customers and encryption of served content. However, the
price paid to CDNs for their services is quite high. Market
research [1] suggests that digital media vendors spend 20%
of their revenue on infrastructure costs for serving content.
While free academic alternative CDNs such as Coral [10]
and CoDeeN [11] exist, these systems are typically limited
in their deployment and the amount of bandwidth they are
allowed to use.

An alternative powerful distribution model is Peer-to-Peer
(P2P) systems such as BitTorrent [4], Napster [17] and Kazaa
[13]) among others. No extra contracted bandwidth is re-
quired as users leverage one another’s upload links to “share”
content. BitTorrent is perhaps the most popular of these
systems, and many analytical works [25, 9, 14, 8] have shown
the high efficiency and scalability characteristics of BitTor-
rent. Unfortunately, it is very difficult to implement proper
authentication and authorization in such P2P systems to
distribute copyrighted or paid content only to intended re-
cipients. In fact, such systems typically implement a search-
able directory of available content including copyrighted ma-
terial. For this very reason, distributors of paid content shy
away from P2P distribution models.

Various companies have attempted to address this prob-
lem with P2P systems. MoveDigital [16] implements a gate-
way in front of a P2P system to allow only authorized users
access. However, once inside, users can leverage the system
for further illegal sharing without limitations. For example,
if a user can learn the IP addresses of other users inside the
system, she can start sharing content with those users di-
rectly for free, bypassing the up-front payment. Moreover,
users might choose to participate in the P2P system and pay
to download files to gain knowledge about other participants
that have similar interests. Then, they can easily form an-
other, private P2P community, a darknet [3], for free future
exchange of similar content.

Another approach is Avalanche [5], which uses network
coding to encode exchanged blocks and relies on a propri-
etary protocol to attempt to prevent malicious use through
security by obfuscation. However, if the system is hacked
such that malicious nodes can participate in the system,
there are no effective mechanisms to prevent its exploitation
for free file sharing. In contrast, TP2 is designed explicitly
to guard against such free file sharing using an open system
architecture that is resistant to exploitation even in the pres-
ence of malicious nodes. Note that the trusted auditors used
in TP2 are owned and managed by the content provider, and
are unlike reputation-based systems [24] where users simply
rate each other such that the resulting ratings may not be
trustworthy.

3. ARCHITECTURE
We designed the TP2 architecture as an extra layer added

to a common P2P system. This layer primarily consists of



Figure 1: To purchase a file, the user logs in on the
portal, pays, obtains a signed credential and con-
tacts the tracker for the purchased file.

components that enforce stronger security and trust param-
eters in the system: the authenticator service and trusted
auditors. While TP2 layer that can be added to virtually
any common P2P system, we use BitTorrent as the under-
lying P2P system for the purpose of the discussion in this
paper and our implementation. We chose BitTorrent given
its popularity, open implementation, and its very efficient
file-swarming technique where users share individual blocks
of a given file.

A brief overview of BitTorrent: the goal is to distribute
a file as fast as possible to all connected peers. To achieve
this, BitTorrent splits the file (such as a digital movie) into
a number of chunks. Participating peers exchange individ-
ual chunks of the file using a file swarming approach. The
swarming algorithm is fully distributed and nodes use it to
decide from which peers they are going to request their miss-
ing chunks. In addition, in each file-sharing instance there
are one or more Seeds present. Seeds are peers that have
all the chunks of the given file. The party that advertises
the content typically initializes one or more Seeds with the
full content of the file. A file-sharing instance also contains
a Tracker that tracks all participating peers. A peer joins
the system by contacting the Tracker. It receives a set of
usually up to 50 IP addresses of other participating Peers.
The Peer then exchanges chunks of the file with the other
Peers and periodically updates its progress to the Tracker
via announce messages.

3.1 System Overview and Usage
When the user decides to purchase a content file for the

first time, she registers at the content provider’s portal. She
picks a username and a password and enters her payment
information (e.g., credit card number). She then downloads
a software client through the portal that allows her to browse
for files, purchase content and perform P2P downloads.

Each time a user makes a purchase from the content provider
(CP) at the CP’s portal, she is authorized the user to per-
form the download by giving the user a verifiable token
(signed credential). The authenticator also generates secu-
rity parameters for the user to be used for secure commu-
nication during its download session. (We sometimes refer
to the file-sharing instance as a download session.) These
parameters are described in Section 3.3.

Figure 2: Users authenticate one another and re-
quest file pieces. A fraction of trusted auditors is
mixed in among the file-sharing peers.

The user is then directed to a tracker that manages a file-
sharing instance for purchased file. The tracker validates
that the user is authorized to perform the download by ver-
ifying her token. The user’s interaction with the authenti-
cator and the tracker is depicted in Figure 1.

As in BitTorrent, the tracker gives out or assigns a set
of other clients or peers to the new client. The client shares
pieces of the purchased file with her assigned peers using Bit-
Torrent’s file-swarming approach. TP2 differs significantly
from BitTorrent in the assignment of the peers. The TP2
tracker ensures that a certain fraction of the peers that it as-
signs are trusted peers, as shown in Figure 2. Trusted peers
or trusted auditors (TAs) are special peers who, in addi-
tion to participating in a download session, detect malicious
communication. The detected malicious peers are identified
and “banished” from the system as described in Section 3.4.

To summarize, the main distinctions between the TP2-
augmented system and vanilla BitTorrent are the following:

•Whereas in BitTorrent a user contacts a tracker directly,
in TP2 a user enters the system through the authenticator
service. The authenticator hands out verifiable tokens and
parameters for secure communication.

•The client and the tracker software is modified to enforce
strong authentication, authorization checking and encryp-
tion in all point-to-point communications.

•In its assignments of peers in each download session, the
TP2 tracker includes a fraction of TAs. The trusted audi-
tors, which are owned and managed by the content provider,
and their identity is known to the tracker but not to the reg-
ular clients. The exact number of TAs is a parameter in the
system that we discuss as part of our analysis in Section 4.

•TAs carry out the same protocols as regular P2P down-
loading clients, but also detect any malicious communica-
tion and “ban” malicious users from the P2P system as will
be described further in the paper.

We now turn to the description of the new components
added by TP2 and the threats they help address.

3.2 Threat Model
The TP2 architecture is designed to deal with threats that

come from within the P2P system. We do not address ex-
ternal threats, as these are common to all content-delivery



systems, be they direct download or P2P. For example, in
the absence of any digital rights management (DRM) mecha-
nisms, a user can always share content indiscriminately (e.g.,
using a different P2P or web portal system, making copies
on portable recording media, etc.). Our goal is to develop a
P2P-based system that is no worse in terms of security than
current-generation direct-download systems.

The first threat comes from the unauthorized users who
try to obtain free content from the system. In the regular
BitTorrent protocol, for example, if the IP addresses of the
file-sharing peers becomes known (as it must, for commu-
nication to occur), an unauthorized user can simply bypass
the tracker, connect to BitTorrent clients running on those
IPs and begin sharing pieces of the content with them. TP2
helps prevent against such easy exploitation by requiring
strong authentication and authorization to be used in the
system by all users. The Authenticator is the new module
responsible for granting authorization parameters to users
upon their entry into the system. In addition, using public-
key cryptography, TP2 individually enforces secure commu-
nication between each pair of authorized users. Naturally,
not all users are expected to follow the protocol (and the
security requirements) faithfully.

Thus, the second threat addressed by TP2 comes from
malicious users who purchase content and thus obtain the
proper authorization to join a file-sharing instance. Such
malicious users may then attempt to discover other mali-
cious users among the file-sharing clients and form a col-
laborative network for future unauthorized sharing. For in-
stance, if five malicious users with similar interests discover
one another in a file-sharing instance, then in the future
only one out of five will need to purchase new content, that
will then be shared with the group. TP2 deals with this
threat by including TAs in the file-sharing instance. If a
TA detects a malicious user attempting to scavenge infor-
mation for future sharing (e.g., because the malicious user
contacted the TA and attempted to share unauthorized con-
tent, or because she allowed a TA impersonating a malicious
user to contact her and share content without proper autho-
rization), then that user is “banished” to an isolated direct
download system as described in Section 3.4. As we show in
our analysis in Section 4, the mere knowledge that TAs are
present in the network causes rational malicious nodes to
behave more cautiously and thus less dangerously towards
the content provider.

The security parameters generated by the authenticator
prevent unauthorized clients from participating in the sys-
tem. Because a malicious client has to purchase content
to gain a one-time system path, this creates a barrier for
casual malicious users to enter the system just to scavenge
for IPs of other malicious nodes. TAs help to set the bar
of malicious exploitation even higher by detecting malicious
users who have purchased content and thus have gained au-
thorized entry into the system. Furthermore, TAs detect
users that do not honor (enforce) the security parameters
generated by the authenticator.

We now describe the functionality of the authenticator
and the TAs that help cope with these threats.

3.3 Authorization
We now describe the authenticator and other modules

which enforce strong authorization and authentication. When
a user purchases the content at the CP’s portal, their credit

card is charged the cost of the content. An entry is also
entered in the CP’s database that authorizes the user with
the given username to download the content. At that point
the authenticator that runs on the CP’s portal generates se-
curity parameters for the user and sends them to the user
over a secure connection (using SSL).

3.3.1 Security Parameters
The security parameters given to the user include a tem-

porary public/private key pair and a signed credential (akin
to a public-key certificate) signed by the authenticator, whose
public key is implicitly trusted by all participating users
(i.e., it is distributed along with the software, or is otherwise
well known). More specifically, we use public-key-signed pol-
icy statements (similar in form to public-key certificates [6])
issued by the content provider as the basis for authorization
in our system. These credentials are supplied to authorized
users after a purchase is made, and can be used as proof to
both the Tracker and the other participants in a P2P down-
load session. In total, the credential includes the following:

•Session ID. This unique 120-byte identifier is given to the
user for her download session.

•Expiration timestamp. Expiration time is an over-estimate
of the time needed by the user to download the file given her
broadband connection and the size of the content file.

•User IP. The IP address of the user’s machine. The user’s
client is allowed to run only on one physical machine during
the session.

•Public Key. The public key from the pair generated for
the user.

•Instance Id. Unique identifier of the file-sharing instance
managed by a tracker.

The authenticator assigns the user to a file-sharing in-
stance (session) with the given Instance Id and sends the IP
address, port number and the public key of the tracker that
manages that instance to the user. The authenticator stores
the Session ID and the Instance ID issued to the user.

3.3.2 Verification by Tracker
The authenticator also sends the Session ID of the new

user to the tracker. The user establishes a TCP connection
to the tracker and sends the certificate to the tracker for
verification. The tracker verifies the authorization of the
user by checking the following parameters:

•Signature. The tracker verifies the validity of the cer-
tificate by checking the signature using the authenticator’s
public key.

•User IP. The tracker checks that the IP address of the user
matches the one in the credential, thereby preventing a ma-
licious user from joining the system from multiple instances
in the hope of discovering other malicious users. The user is
prevented from spoofing the IP through a simple challenge-
response exchange.

•Private Key. The tracker checks that the user is the
holder of the private key corresponding to the certificate by
testing that the user can decrypt a random string encrypted
with the user’s public key (the challenge-response exchange
from the previous item).

•Session ID, Instance ID, Expiration The tracker checks
that the session ID is a valid ID assigned to the given in-



stance by the authenticator, and that the certificate has not
expired.

If all the parameters match the tracker, the clients use
their public/private keys to negotiate an RC4 session key
for encrypting all future communication over their TCP con-
nection. The tracker then assigns and sends a list of other
peers to the new user, along with a new credential that lets
the new user contact other nodes of the same session.

3.3.3 Peer Verification
When one node contacts another, she sends her tracker-

issued credential. The receiving node performs checks sim-
ilar to the ones performed by a tracker: it verifies the sig-
nature, the IP address, the public/private key binding, ex-
piration, and instance ID. She also checks that the correct
session ID is included in the credential she received from
the tracker. She sends her own credential back to the new
node, who performs the same checks. Then they negotiate
the session key for their encrypted TCP connection.

3.4 Trusted Auditors
In each download session, the system trackers include

some TAs. These mimic other P2P peers in their down-
load and upload strategies: through both passive partici-
pation and active probing, TAs detect malicious nodes that
attempt to discover other malicious nodes for future ille-
gal file-sharing. The discovered nodes are then banished
to an isolated direct-download system where they can no
longer discover other malicious nodes, and where they have
to pay a slightly higher fee for downloading content, reflect-
ing the higher cost of bandwidth and management for the
CP. For the remainder of this paper, we assume this sim-
ple banishment-based punishment. Other reaction strate-
gies are certainly possible, and we leave them as the subject
of future work.

Furthermore, we assume that there is a cost inherent in
using TAs. Thus, while TAs will reduce the loss (and thus
increase profit) of the CP, they also incur a cost (e.g., in
terms of the bandwidth they consume, which the CP has to
pay for).

3.4.1 Malicious Users
In addition to performing the regular file downloads, mali-

cious users perform queries of other P2P peers and discover
malicious ones among them. Their software both probes
and responds to probes from other malicious users. Strictly
speaking, we define malicious probing as any communication
that deviates from accepted TP2 protocols. In particular,
the following forms of communication from other P2P nodes
are deemed malicious:

1. A connection attempt by a node on the protocol’s TCP
port but with an improperly formatted request.

2. A connection attempt on the correct protocol port
with an invalid or expired certificate.

3. A connection with a valid certificate but an unknown
Session ID.

4. A connection attempt with a valid certificate, and Ses-
sion ID but sending messages that are not accord-
ing to the given file-sharing protocol specification. In
the case of our implementation, this would be mes-
sages that are not formatted to fit one of the defined

types of BitTorrent messages (i.e., anything other than
REQUEST, PIECE, BITFIELD, HAVE, CANCEL,
CHOKE, UNCHOKE, KEEPALIVE, INTERESTED
and NOT INTERESTED messages). (See the BitTor-
rent specification [4] for further documentation).

5. Finally any communication by another P2P peer to a
non-protocol port.

3.4.2 The Probing Game
Malicious users may probe and reply to such probes from

the P2P peers assigned by the tracker. If the malicious user
is lucky, she will discover a few other malicious users by
such probing and can form a file-sharing cluster with them.
However, if she is unlucky, she may probe a TA instead
and get detected and banished from the P2P system. A
malicious node may also get detected if it replies to a fake
probe from a TA pretending to be malicious. The malicious
node tries to maximize the number of other malicious nodes
that it can discover, while avoiding being detected by a TA.
We call this probing behavior by malicious nodes and trusted
auditors a “probing game”.

In Section 4 we describe and analyze the probing game in
more detail. Briefly, a malicious node decides on a strategy in
terms of how many of its neighbors it will attempt to probe
or how many neighbor’s probes it will reply to. A riskier
strategy would involve probing more neighbors and carry a
higher probability of getting caught. A riskier strategy may
also carry a bigger payoff, as it may discover more malicious
nodes to form a file-sharing cluster with. The full analysis is
presented in Section 4. For most of our analysis in Section 4
we assume that, once a cluster is formed, it is not broken
up. Thus, malicious users that are banished to the direct-
download system can still share content that they pay for
(or that they already have).

3.4.3 Behavior of Trusted Auditors
TAs act as hidden “sentinels” in the system to prevent

excessive malicious probing, and reduce the rate of mali-
cious cluster formation. To stay hidden, TAs mimic differ-
ent roles: regular or “neutral” nodes, malicious nodes, and
seed servers.

In their “neutral” role, TAs mimic the behavior of P2P
peers by implementing the same discovery and download al-
gorithms, and exhibit similar download speeds, arrival and
departure rates as some of the regular clients. (This be-
havior is mimicked from historic observation of other P2P
clients). They also change IP addresses between download
sessions, or periodically.

In their “malicious” role, TAs mimic the behavior of ma-
licious nodes by sending out probes to their neighbors at the
same rate as other malicious nodes. To mimic the behavior
of other malicious nodes, we employ two strategies. One
strategy involves actively searching, studying and running
the software that malicious users use on TAs. (We believe
this to be a reasonable strategy, as the content provider
can invest significantly more resources than individual mali-
cious users to obtain such software.) The second strategy is
learning the malicious probing format and pattern on the fly.
This approach is based on recent work done at UC Berkeley
on the RolePlayer system [7]. RolePlayer can quickly learn
and replay various network communication patterns.

Once a TA detects an unauthorized probe or receives a
positive reply to a fake probe of its own, it identifies the



corresponding node as malicious. The system “punishes”
such a user by forcing all of her future file downloads to be
performed in an isolated direct-download system. The user
pays a higher price for her future purchases. In our analysis,
we use the very conservative approach by setting the differ-
ence in the cost the be exactly the cost of serving content
to such a user in a direct-download system. This penalty is
used as a deterrent to prevent any user from misbehaving.
In addition, the user will not interact with P2P peers in fu-
ture downloads and will not be able to grow her cluster any
further. It is difficult for a user to create new identities after
she has been detected, because the identity is tied to a name,
and a credit card billing address of the user. Ideally, TP2
detects and places all malicious users in an isolated system
and uses P2P bandwidth to serve the rest of the users.

Finally, TAs serve in the capacity of BitTorrent Seed servers
(i.e., they contain all the pieces of the shared file). Since
each P2P node is assigned to some TA, this guarantees that
it will be able to find all of the missing pieces among its
neighbors. We mentioned earlier that, to mimic users’ be-
havior, TAs pretend that they join the system with no file
pieces. However, over time P2P peers let their neighbors
know that their collection of pieces has grown. In BitTor-
rent, we implement this mechanism with “HAVE” messages
that clients use to announce to their neighbors that they
have downloaded a new piece.

3.4.4 Out-of-System Probing
Another type of unauthorized probing comes from outside

of the file-sharing instance. In this type of misbehavior, a
malicious node joins the system just to gather IP addresses
of its neighbors. Some time after its participation, it as-
sumes a new IP address for itself and sends out malicious
probes to the previously collected IP addresses.

Even though such a probe can be detected by a TA, it is
hard to determine which user in the system it corresponds
to. Since the user is not logged into the system and is pos-
sibly running from a different IP, the identity of such a user
cannot be determined.

We deal with this “out-of-system” probing also by per-
forming out-of-system active probing. TAs learn the rate at
which such out-of-system probes arrive and they mimic this
type of active probing at a slightly higher rate. Similar to
the detected probes, the fake probing is performed against
IP addresses of current or prior participants. If a malicious
node replies to such a probe, then the last registered user
known to have logged in from that address is banished.

This fake out-of-system active probing is a deterrent against
malicious nodes replying to the probes. Since the TAs probe
at a slightly higher rate, malicious nodes know that if they
reply to an out-of-system probe they will more likely be
communicating with a TA. Thus, malicious nodes have lit-
tle incentive to reply to such probes. This deterrent-based
policy mitigates the threat from out-of-system probing and
allows us to focus our efforts on the “in-system” probing.

3.5 Scalability of TAs
The number of trackers and TAs should scale with the

growth of participants in the system. As the number of
participants grows, so will the number of CP-owned ma-
chines. The cost of maintaining such machines should then
scale with the growing revenue. The system does not re-
quire many physical TAs, as each such machine can partic-

ipate in a number of simultaneous download sessions under
virtual IPs. For instance, if the fraction of TAs in each
file-sharing instance is 5%, and each machine participates
under 10 virtual IP addresses, then for a 100,000 simultane-
ous participants only 500 physical TA-dedicated machines
are necessary.

4. ANALYSIS
In Section 3 we use strong authentication and authoriza-

tion to prevent unauthorized users from downloading con-
tent. Here, we are going to analyze the second threat we
discussed in Section 3.2 - the authorized participants’ at-
tacks. In these attacks, malicious nodes become part of our
P2P network by pretending to be regular users and register-
ing and paying for movie downloads. If left unchecked, such
malicious nodes may exploit the regular P2P system oper-
ation to extract information from other participants. The
malicious nodes can then form large malicious clusters for
future illegal file-sharing and trading. These clusters then
can game the system by purchasing one copy of a file and
sharing it among its members. As we will show with a sim-
ple economic analysis, such illegal sharing could significantly
decrease the profits of the content provider and be a strong
deterrent against the adoption of a P2P approach for con-
tent distribution. As mentioned in Section 3, we introduce
trusted auditors which limit the formation of large malicious
clusters. In this section, we analyze the behavior of the ma-
licious nodes, and show, via both an analytical model and
simulations, that even a small number of trusted auditors
can effectively curb the growth of clusters and successfully
protect content provider’s profits.

4.1 Economic Impact
We propose a simple economic model to quantify the im-

pact that malicious nodes have on the CP’s profit. We as-
sume that the average price of digital content sold by the CP
is S dollars. The CP pays a large part of that price as royal-
ties $R to the content owner (a movie studio for example),
and retains $D. (D = S −R). In a direct download system
the CP also pays $B for the bandwidth required to serve
a file of average size to the end user. Thus the CP’s profit
per movie purchase is, on average, $(D − B). The market
research in [1] shows that digital movie and audio stores pay
roughly 60 − 70% of end price (S) in royalties and the cost
of bandwidth amounts to about 20%. Using a store similar
to Apple Itunes as an example, one can purchase standard
length (1GB) digital movies for $10, we assume that D, the
store’s profit before bandwidth cost is $3 to $4 and B, the
cost of bandwidth is roughly $2 per download. We fix these
assumptions in this section, but our results hold for wider
ranges of values (see Figure 9 in the Appendix).

Using a P2P download approach the CP saves on most of
the bandwidth cost and claims a full $D as profit. Unfor-
tunately, in the presence of malicious users the CP collects
smaller amount of revenue, and thus smaller profit since the
malicious nodes form downloading clusters to avoid content
payment. For example, if two malicious users manage to dis-
cover each other in the P2P system they will form a cluster
of size 2. Then, these users will take turns purchasing files
and sharing them with each other for free instead of buy-
ing them through the CP. For simplicity, we assume that
malicious and non-malicious (or neutral) users desire to ac-
cumulate files at the same rate (e.g. say they download one
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Figure 3: CP profit per user download. Distinct combinations of D (profit before bandwidth) and B (band-
width cost) capture variations in possible royalties and bandwidth agreements

movie per week), and that their interests are similar and
thus they only need to purchase files at a fraction of the
rate of the neutral users. For instance, in a cluster of two
malicious nodes they each purchase movies at half the rate
of the neutral. More generally, users who belong to a cluster
of size K need to purchase content at a 1

K
fraction of the

rate of the neutral users to get the same number of files in
a given time interval. This scenario is pessimistic, since we
assume that we lose from all malicious clusters whereas in
practice, only some of the users in the cluster will want any
particular file.

In our model, a single download session consists of up to
Ns nodes that are all assigned to one another by a tracker.
For a popular file, the system runs multiple download ses-
sions of up to Ns nodes each. We assume that a single session
contains at most M malicious nodes, T trusted auditors and
Q neutral nodes with Ns = Q + M + T . In a bittorrent net-
work a typical value of Ns is around 50 − 60 nodes, thus in
our system we will assume a maximum bound of Ns = 100.
Let Mi be the number of users in the system who are mali-
cious and who belong to clusters of size i. Then M =

P
i=1

Mi.

We define mi = Mi/(M+Q) and m = M/(M+Q) to denote
the ratio of malicious users to the total number of malicious
and neutral nodes. We can now derive an amortized profit
received by the CP each time a user accumulates a file as

Profit = D · (1 − m) + D ·
X
i≥1

mi

i
. (1)

The first term in Equation 1 is the CP profit from neu-
tral users who pay a full price and the second term is from
malicious users who pay only a fraction 1

i
of the price based

on their cluster size i (assuming multiple downloads). On
the other hand, the profit of the CP in a direct-download
system per download is D −B. We remind the reader once
again that we do not attempt to solve out-of-band sharing
that can exist with both direct and P2P systems. Rather, we
are interested in curbing file-sharing from clusters formed by
malicious exploitation of the P2P distribution system itself.

Using Equation 1, we can produce the CP profit plots
for various values of D and B. Figure 3 depicts CP profit
curves for the P2P and the direct download systems for var-
ious values of m ranging from 0 to 80%. Each plot picks a
different combination of values for D and B in a reasonable
range as describe above to allow for variations in the cost of

royalties and bandwidth. The x-axis shows the maximum
size of a malicious cluster, K. The y-axis shows the average
profit claimed by the CP user download. Each plot contains
two horizontal lines: the top one representing a profit of a
P2P system assuming no malicious nodes and the bottom
one representing profit of a direct download system. The
difference between the two plots is exactly B, the cost of
bandwidth per download. The non-linear curves plot Equa-
tion 1 and represent the profit of a P2P system with various
fractions m of malicious users. The plots show that as the
fraction of malicious nodes and the file-sharing clusters that
they form grow the profits for the P2P system dwindle. In
fact, as shown in the Figure 4, as the malicious nodes’ frac-
tion approaches 80% and for malicious clusters of 50 nodes,
the CP collects less than half the profits of a direct download
approach. Even for less aggressive collections of malicious
users, we see that most of the economic advantage of P2P
rapidly evaporates. If the malware that implements mali-
cious code becomes readily available on the Internet, even
the non-savvy users could easily become malicious. As the
fraction of malicious users proliferates and they form larger
clusters with time the profits of the CP quickly erode. For
a P2P system to succeed, it is thus imperative to limit the
effect of the malicious nodes. In the rest of the section, we
show how even a small fraction of trusted auditors could
maintain the near-optimal P2P level profits for the CP.

4.2 Probing Game Revisited
To model the interaction between the malicious and trusted

auditors we revisit the probing game presented in Section 3.4.2.
To form clusters, malicious nodes try to probe or reply to
probes from other malicious nodes to form and grow a ma-
licious cluster. To detect malicious nodes, trusted auditors
also pretend to be malicious. They actively send probes and
reply to probes that they receive from others. Since the goal
of the attacker is to grow without being detected, she has to
select a growth factor GF which reflects the minimum clus-
ter size that she aims to belong at the end of a single session
(download). Therefore, the malicious nodes probe and reply
to probes until they either discover at least GF−1 other ma-
licious nodes or are detected by a trusted auditor. Observe
that for GF = 1 malicious nodes will not do any probing
and will act exactly as a neutral node. On the other hand,
if GF > M the malicious nodes are certain to hit a trusted
auditor and thus become detected before they can grow into
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Figure 4: CP profit per user download for D=4,
B=2 and clusters of size up to 50

a cluster of size GF . Thus, GF will take on some value in
the range from 1 to M . In general, we make the following
set of assumptions about a download session.

• Malicious nodes remain “active” (i.e. they send probes
and reply to probes) until they reach their growth fac-
tor of GF .

• Each malicious node knows both M and T in a down-
load session, and based on that picks the most prof-
itable value of GF . We suggest a good value for GF
later in the section based on a simulation of multiple
games.

• If a malicious node e is detected by probing or reply-
ing to a probe from a trusted auditor t it stops prob-
ing. We assume that without revealing that he is a
trusted auditor, t can convince e that together they
have formed a cluster of size GF (i.e. if e is already
part of a cluster of size GF − k, t tells e that is part
of a cluster of size ≥ k).

• Both malicious nodes and trusted auditors send probes
to randomly chosen neighbors at the same probing rate
per node. Trusted auditors send probes at the same
rate to be indistinguishable from malicious nodes. Oth-
erwise, collaborating malicious nodes could easily pick
out trusted auditors in the system replying only to low
frequency requests.

• Upon receiving probes, neutral nodes simply ignore
them. (Having neutral nodes play a role in detecting
malicious nodes can potentially help the detection of
malicious but we leave it as an item for future work).

Our primary focus is to show that over time, as malicious
nodes play multiple games, (i.e. they participate in many
download sessions) most of them become detected and large
clusters are unlikely to form. Small clusters may form, but
these have limited economic impact. However, first we show
some simulation-based plots to give some intuition about
what happens in a single download session. We note that
these plots use averaged probabilities collected from a thou-
sand runs of a simulated game.

Figure 5 shows the probability that a malicious node suc-
ceeds in forming the desired cluster size. Here the number of

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Growth Factor Size

P
ro

b
ab

ili
ty

 o
f 

S
u

cc
es

s

Probability of Success m=50%

M/T=0.5
M/T=1
M/T=5
M/T=10

Figure 5: For a single game, probability that a ma-
licious node succeeds in forming a cluster of at least
its growth factor for m=50% (i.e. 50% of users are
malicious)

malicious nodes in the download session m is fixed at 50%
and the number of trusted T is varied over different ratios
of M/T . The x-axis shows the strategy (i.e. growth factor)
chosen by the malicious nodes in the game. The y-axis gives
the probability that a node succeeds in achieving reaching
its selected growth factor. As an example, the scenario of
M/T = 1 (the number of malicious nodes and trusted au-
ditors is the same) and a target GF = 2, shows that the
probability of a node succeeding in forming a cluster of size
2 is about 25%. Thus there is a 3/4 chance that a node
gets detected in such a game. An important observation
about this plot is that all curves are decreasing monotoni-
cally. That means that as the malicious nodes become more
aggressive by picking larger growth factors, they are also
more likely to be detected. Interestingly, even for the top
curve (the most favorable of these scenarios for malicious
nodes) and the least aggressive target of GF = 2, there is
only a 77% chance that such a node succeeds (i.e. there is
a 23% chance that it becomes detected). So we see that
even in a very favorable scenario the probability that the
node does not become detected in k independent games is
roughly .77k which decreases exponentially.

Figure 6 shows the cumulative probability of a node grow-
ing into a cluster of size > X (where X is the value on the
x-axis). Here m is again fixed at 50%. The three distinct
plots correspond to three values of M/T , and the curves in
each plot correspond to different growth factors from 2 to
5. (We picked these values for GF because for higher values
malicious nodes experience a very high detection rate and
thus are unlikely to choose such values). These plots show
the same data as Figure 5, but in more detail by including
the cumulative distribution of all cluster sizes formed. Ob-
serve that clusters of sizes both smaller and larger than the
growth factor can form. Clusters smaller than the growth
factor are those that are detected before they could grow to
the target size. These clusters cannot continue to grow in
the future games. Also observe that for a growth factor GF
clusters as big as (2 · GF − 2) can form, when two clusters
of size GF − 1 merge. However, the probability of form-
ing larger clusters drops off quickly. The actual value of a
strategy can only be understood by looking at the gains of
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Figure 6: Cumulative probability of a malicious node forming a cluster of size > X (value on the x-axis) in a
single game. Curves correspond to given target growth factor GF . Again, all plots use m=50% (50% fraction
of malicious nodes to neutral nodes). The ratios of malicious nodes to trusted auditors are 10, 5, and 1,
respectively.

a node over multiple games. We perform this evaluation in
Section 4.4.

4.3 Analytical Model
We start by analyzing the single session download model

and describing the growth of clusters both in the first ses-
sion and after multiple sessions (downloads). To this end,
we present a Markovian model with memoryless states and
well-defined transition probabilities. Using this Markovian
model we can fully compute the stationary probabilities
of malicious cluster formulation (i.e. the probability that
a node ends up in a cluster of size K). Moreover, our
model can compute the stationary probabilities of the ab-
sorbing(final) states starting from any initial discrete cluster
distribution. This enables us to compute the stationary dis-
tribution across multiple downloads by recursively applying
our analysis starting with singleton malicious clusters and
using the resulting cluster distribution as a starting distri-
bution for the next session.

To simplify our presentation, we start by modeling a down-
load session with a M and T malicious nodes and trusted au-
ditors respectively. Moreover, we set the value of the growth
factor to be 2, (GF = 2). A state in such a download session
is fully captured by the tuple < A, F > where A is the num-
ber of active malicious nodes (that are still probing) and
F the number of detected (found) nodes. The number of
clusters of size two at a given state is simply the remaining
nodes: M−F−A

2
. The valid transitions from < A, F > are

to < A− 2, F > (two active malicious nodes form a cluster)
and to < A−1, F +1 > (one active node becomes detected).
Recall that all active malicious nodes and trusted auditors
probe at the same rate, and thus the probability that the
next probe is from a malicious node is A

A+T
and is T

A+T
that

it is from a trusted auditor. The probability of a cluster be-
ing formed is simply the probability that the next probe is
sent by an active malicious node or that it is sent to one
other active malicious node. (Recall that the probabilities
do not need to account for probes being sent to inactive
malicious or neutral nodes as such nodes simply ignore the
probes.) We thus have the following transition probabilities
for F ≥ 1 and A ≥ 2:

P<A,F>,<A−2,F> =
A

T + A
· A − 1

T + A − 1
.

We also consider the case when a node is detected, which
happens when a malicious node sends a probe to a trusted
auditor or trusted auditor sends a probe to a malicious node.
For A ≥ 1,

P<A,F>,<A−1,F+1> =
A

T + A
· T

T + A − 1
+

T

T + A
.

The starting state is < M, 0 > and the terminal states are
of the form < 0, F > where no active nodes are left. The
process is clearly Markovian as transition probabilities are
uniquely determined by the current state, and the probabil-
ities add up to 1.

Similarly, we can define the states and transition probabil-
ities for games with GF > 2. Here the state space becomes
< A1, . . . , A2·GF−2, F1, . . . , FGF−1 >, where Ai is the num-
ber of clusters of size i and Fj is the number of detected
clusters of size j. Note, that for a target size GF it is pos-
sible to have clusters of size up to 2 · GF − 2, because two
active clusters of size GF −1 could join together. Also, note
that the state reflects the numbers of detected clusters of
different sizes, rather than lumping all the detected nodes
together in one number F . We maintain this distinction
because nodes that form a cluster of size < GF and then
become detected may still file-share files that they down-
loaded in the future, even though all of these nodes will be

banned from the P2P system. Let L =
GF−1P
k=1

k · Ak be the

number of active nodes (i.e. all malicious nodes in clusters
of size < GF ). We can then proceed similarly to the case
GF = 2 and compute the non-zero transition probabilities
in three cases.

The first case is that a cluster of size i becomes detected,
which occurs when a node belonging to a cluster of size i
probes a trusted auditor or a trusted node probes a node in
a cluster of size i.

P<...,Ai,...,Fi,...>,<...,Ai−1,...,Fi+1,...>

=
i · Ai

T + L
· T

T + L − i
+

T

T + L
· i · Ai

L

The second case is when two clusters of size i and j, with
i < GF and j < GF join to form a cluster of size i + j. The
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Figure 7: Cumulative probability of forming clusters for growth factor GF = 2 and GF = 3 for multiple games.
Notice that both plots look similar and that for M/T = 10, GF = 2 results in slightly larger cluster sizes.

third case is like the second but with i = j.

P<...,Ai,...,Aj ,...,Ai+j ,...>,<...,Ai−1,...,Aj−1,...,Ai+j+1,...>

=
i · Ai

T + L
· j · Aj

T + L − i
+

j · Aj

T + L
· i · Ai

T + L − j

P<...,Ai,...,A2i,...>,<...,Ai−2,...,A2i+1,...>

=
i · Ai

T + L
· i · (Ai − 1)

T + L − i

These are the only allowable and valid transitions. The
starting state is S =< M, 0, . . . , 0 > means that all nodes
are singletons (i.e belong to clusters of size 1 ). Moreover,
all terminal states are of the form:

< 0, . . . , 0, AGF . . . , A(2·GF−2), F1, . . . , FGF−1 >

There are no clusters of size less that GF as all malicious
nodes have either been detected or have formed clusters of
size equal or more than GF .

Once we construct the transition probabilities matrix P
we can easily compute the probability of specific terminal
states by exponentiation P (n) for some n > 1 at which the
terminal probabilities converge. PS,j

(n) gives the probability
that a particular terminal state j occurs. (Note also that n is
bounded by M ∗(GF −1) as each malicious node transitions
at most GF − 1 times).

4.4 Multiple Games (Downloads)
For multiple downloads, we have to consider that after

the first download session, there are some undetected clus-
ters formed. Furthermore, we assume that it is to the ben-
efit of the malicious nodes to have only one representative
from each cluster participate in the next download session
since they share content out-of-band.(this way only one of
them pays) For example, assuming a closed system (no new
arrivals), if in the first download we had M malicious par-
ticipants and all of them managed to form clusters of size
2 , in the second download only M/2 of them will partic-
ipate. Therefore, after the first game, we will only have a
fraction of the malicious nodes that participated in the first
download either because they managed to form clusters or
because they got detected by trusted auditors. In addition,
we assume that these malicious participants are acting on
behalf of the formed clusters and thus are still aiming for

the same growth factor GF .
The Markovian approach we presented in the previous

section can still be applied but with some modifications: we
have to recompute the transition probabilities because for
each games we start with a different number of malicious
nodes. We can compute the number of malicious nodes
between games by taking into consideration the following
parameters: formed clusters from previous game (both de-
tected and undetected), arrival of new malicious singletons
and departures of malicious nodes. Formed undetected clus-
ters are the clusters who still contain nodes that have not
been detected in previous downloads. In addition, we as-
sume that we have Ar arrivals of malicious singletons and De
departures of malicious nodes that can be either previously
detected or undetected. For simplicity, we chose Ar = De
and we call the new quantity “renewal rate”. Throughout
our analysis, we used a renewal rate of 5% but similar results
hold for renewal rats of 1% to 10%.

Thus, based on the information on the clusters formed
and detected from the previous game and the renewal rate,
we compute the new number of malicious nodes that will
participate in the next download. We then generate the
transition probability matrix and we start from state S =<
Mn, 0, . . . , 0 > where Mn is the computed malicious nodes.
Using the resulting steady state probabilities and the pre-
vious cluster distribution we had prior to the download, we
compute the resulting joint distribution assuming that only
one node from the undetected clusters participated in the
download. For example, assuming that we have a represen-
tative of cluster of size K with F detected participating in
a download with growth factor GF = 2 and initial cluster
distribution Pi then the resulting transitions are to a clus-
ter of size K + i with F detected with probability Ps · Pi

and a cluster of size K with 1 detected with probability Pd,
where Ps and Pd are the probabilities of actually forming
the cluster or getting detected respectively.

Although, maintaining state for all formed clusters across
multiple downloads appears to be large, in practice it is
not. We start from a small initial set of malicious single-
tons that form clusters which grow by merging with each
other, leading to rapidly declining number of non detected
clusters. Moreover, the malicious to trusted auditors M/T
is also decreasing, leading to more detected malicious nodes.
Therefore, although there are in principal a large number of
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Figure 8: Comparison of CP profits between a protected and an unprotected system for bandwidth cost of 2. On the

left we have a system without trusted auditors and on the right a system with a ratio of trusted auditors to malicious

users being 10. Clearly, the protected system yields more profits than the unprotected system for the same fraction of

malicious nodes which are very close to the ones produced by a P2P system with 0% of malicious nodes.

possible cluster sizes that can be formed, in practice the ac-
tual number of formed clusters decreases fast over multiple
downloads.

4.4.1 Simulations
To verify our analytical model and to avoid the computa-

tional complexity involved in computing joint probabilities
cluster sizes formed over multiple downloads of a large user
population, we generated simulations of single and multi-
ple download sessions. The results of our simulations fully
agree with the ones obtained using the analytical model for
growth factors GF = 2 and GF = 3. For larger values of
GF , and to show that such choice of GF is not beneficial
for the malicious nodes over multiple downloads, we relied
on the simulation results.

We used matlab to simulate the overall behavior of a
BitTorrent-like P2P system with all types of nodes: neu-
tral, malicious and trusted. We varied the overall system
size ranging from 105 to 107 participants and our results
remain consistent for all of them. The plots presented in
the paper are obtained using a population of 2 · 106 nodes.
Our aim was to examine the performance limits of our sys-
tem under diverse operating conditions by varying both the
fraction of the malicious nodes M and their relative ratio
to the trusted auditors M/T . In addition, we wanted to
find which growth factor is more beneficial for the malicious
nodes across multiple downloads. We picked 30 downloads
as the number we use for the multiple plots because at 30
downloads we have detected the overwhelming majority of
the formed clusters for all M/T ratios we consider. In ad-
dition, after 30 downloads, we notice that new clusters are
formed almost exclusively by the new malicious arrivals and
thus we consider the distribution to be stable.

4.4.2 Results
We now describe our concluding results about the system.

We first study the affect of the parameter GF . In Figure 7,
we present results from multiple downloads and for growth
factors GF = 2 and GF = 3. The depicted results indicate
that there is very little difference in the malicious cluster size
distribution (CDF) when comparing GF = 2 and GF = 3

with the first having slightly better results. Therefore, the
malicious users should select GF = 2 as their growth factor
if the want to optimize their probability of being in a larger
cluster over multiple downloads.

We now compute the actual CP profit for our system.
First, we have to extend the economic model formula in
Equation 1 for the amortized profit per movie to include the
bandwidth that the CP pays for the trusted auditors:

(Profit with trust) = D · (1−m)+(D ·
X
i≥1

mi

i
)−B · T

M + Q

(2)
The new factor in Equation 2 is B · T

M+Q
, which ac-

counts for the bandwidth cost used by the trusted audi-
tors. We use the ratio T

M+Q
because m is also normalized

by M + Q, the total number of malicious and neutral nodes
in the system. In this formula, we assume that after being
detected, malicious nodes are moved to a direct download
system pay the bandwdith cost for future downloads. Al-
ternatively, we can leave these users in the P2P system, but
notify them that they are on probation and force them to re-
download a proper software client. They are warned that if
detected again they can be referred to the courts or charged
with a large fine on their credit card since they have al-
ready breached the contract with illegal activity (and follow
through on such threats). Observe, that assuming that such
users will continue to act as neutral our Equation 2 does not
change as it treats neutral users and “banned” users equally.
But keeping such users in the system is more likely to re-
tain their business as they don’t have to pay the penalty
bandwidth cost for future downloads.

The CP profits from the resulting formation of clusters for
multiple games are shown in Figure 8. Here we see that for
all fractions of malicious nodes, the system with the trusted
auditors yields significantly more profit when compared to
the unprotected system with the same fraction of malicious.
Furthermore, the TP2 system profits are very close to the
ones we get for a pure P2P system without malicious nodes,
especially for small fractions of malicious nodes.

5. IMPLEMENTATION & PERFORMANCE



We implemented an TP2 prototype by adding modifica-
tions to the existing BitTorrent client and Tracker (version
3.9.1) written in Python. Our modest modifications in-
cluded adding secure channel communication using RC4 en-
cryption, assignment of trusted auditors by the Tracker, and
the distribution of credentials by the tracker to the peers.

Due to space constraints, we only briefly discuss two sim-
ple experiments we conducted using PlanetLab [19] to com-
pare the download speed of TP2 clients compared to Bit-
Torrent clients on a set of geographically distributed ma-
chines given the overhead of secure communication and cre-
dentials distribution and verification in TP2. Most machines
used were equipped with 3GHz processors and ran the Linux
2.6.12 kernel.

For our first test, we deployed 41 BitTorrent clients on ran-
domly picked machines in the US. One of these machines we
designated as the Seed client and initialized it with a 512MB
movie file. To test the absolute worst case in terms of down-
load time, we stored no parts of the file on the rest of the
clients before the test. We ran the Tracker process on a
machine outside of PlanetLab, a blade server with 3.06GHz
processors, running a Linux 2.6.11 kernel, and a 10Mbit/sec
upload bandwidth link. We ran the test once with the un-
modified BitTorrent code and once with TP2. The BitTor-
rent download times were only 0.8% faster on average, show-
ing that TP2 adds negligible performance overhead.

For our second test, we performed a similar experiment as
the first test but using a more dynamic scenario where peers
join the download system at staggered times. We began with
one Seed and 76 clients. The 76 clients joined the system at
2 minute intervals. By the time the later peers start, more
clients in the system already have partial data sets. There-
fore, newer clients have more sources to download the data
from and thus their download times are generally faster. For
this test, TP2 clients on average slightly outperformed Bit-
Torrent by about 0.5%. We have tracked this down to the
fact that the TP2 nodes contact the Tracker more frequently
and receive new connection assignments at a faster rate at
startup. As a result, in the beginning of the download they
have slightly more choices for selecting faster sources.

The CPU overhead on the TP2 clients was also minimal as
RC4 encryption is a very fast stream cipher. Average CPU
utilization on the TP2 and BitTorrent clients was almost
identical at roughly 1.3% and 1.23% respectively.

6. CONCLUSIONS
TP2 is the first system of its kind that can be layered on

top of existing P2P systems to enable content providers to
leverage the download capabilities of a P2P system, and yet
elevate their trust and content control to levels similar to
that provided by a direct download system. Our approach
provides strong authentication and introduces a novel notion
of trusted auditors into a P2P system. Strong authentica-
tion ensures that the P2P system itself cannot be directly
used for free file sharing. Trusted auditors appear as regular
P2P nodes, but actively and passively detect malicious par-
ticipants in the system to prevent scavenging of information
that could be used to identify other participants for forming
out-of-band free file sharing clusters. Just like in a direct-
download system, TP2 does not prevent a user who legally
downloads content from sharing it out-of-band, but it does
prevent the system itself from being exploited in any way to

facilitate out-of-band free file sharing.
We have analyzed TP2 by modeling it as a game between

malicious users who try to form free file sharing clusters and
trusted auditors who curb the growth of such clusters. We
have combined this analysis with a simple economic model
to quantify the cost-effectiveness of our approach in the pres-
ence of malicious users. Our analysis shows that even when
half of the participants in a system are malicious users, our
system can detect 99% of malicious users and prevent them
from forming large clusters, thereby providing strong pro-
tection of the P2P system against unauthorized file sharing.
For most configurations, our analysis shows that TP2 yields
profits that are significantly higher, more than 80% higher
profit, than a direct download system based on conservative
profit and bandwidth cost models. We demonstrate that
TP2 can be implemented on top of BitTorrent with modest
modifications, and provides its content protection and eco-
nomic benefits with negligible performance overhead com-
pared to vanilla BitTorrent. We believe that our analysis
and system provides a strong economic motivation for con-
tent providers to adopt regular P2P system enhanced with
security guarantees for their content delivery. We hope that
TP2 can serve as a strong foundation for creating practical
P2P systems that can be used for paid content distribution.

7. REFERENCES
[1] J. G. Aguilar. personal communication, February 2006.
[2] Akamai. http://www.akamai.com/.
[3] P. Biddle, P. England, M. Peinado, and B. Willman. The

Darknet and the Future of Content Distribution. In
Proceedings of the 2nd ACM Workshop on Digital Rights
Management, November 2002.

[4] Bittorrent. http://www.bittorrent.com.
[5] P. R. C. Gkantsidis, J. Miller. Anatomy of a p2p content

distribution system with network coding. In IPTPS,
February 2006.

[6] CCITT. X.509: The Directory Authentication Framework.
International Telecommunications Union, Geneva, 1989.

[7] W. Cui, V. Paxson, N. Weaver, and R. H. Katz.
Protocol-independent adaptive replay of application dialog.
In Proceedings of the 13th Annual Network and Distributed
System Security Symposium (NDSS), February 2006.

[8] R. D. Qiu. Modeling and performance analysis of
bittorrent-like peet-to-peer networks. In SIGCOMM, 2004.

[9] R. D.Arthur. Analyzing the efficiency of bit-torrent and
related peer-to-peer networks. In SODA, January 2006.

[10] M. J. F. et al. Coral. http://www.coralcdn.org/.
[11] V. P. et al. Codeen. http://codeen.cs.princeton.edu/.
[12] Apple itunes. http://www.apple.com/itunes.
[13] Kazaa. http://www.kazaa.com.
[14] M. V. L. Massoulie. Coupon replication systems. In

SIGMETRICS, 2005.
[15] Limelight. http://www.limelightnetworks.com/.
[16] Movedigital. http://www.movedigital.com/.
[17] Napsterm. http://www.napster.com.
[18] Piratebay. http://thepiratebay.org/.
[19] Planetlab. http://www.planetlab.org/.
[20] Red Skunk Tracker. http://www.inkrecharge.com/ttrc2/.
[21] Torrentspy. http://www.torrentspy.com/.
[22] Vitalstream. http://www.vitalstream.com/.
[23] Xbox-sky. http://bt.xbox-sky.com/.
[24] L. Xiong and L. Liu. Peertrust: Supporting

reputation-based trust in peer-to-peer communities. In
IEEE TKDE, Special Issue on Peer-to-Peer Based Data
Management, 2004. 6, 2004.

[25] G. d. V. X.Yang. Service capacity of peer to peer networks.
In INFOCOM, 2004.



8. APPENDIX
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Figure 9: 3D profit plots with no trust and trust for
variable profit before bandwidth D and bandwidth
cost C


