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Abstract

Thin-client computing offers the promise of easier-to-maintain computational services with reduced
total cost of ownership. The recent and growing popularity of thin-client systems makes it important to
develop techniques for analyzing and comparing their performance, to assess the general feasibility of the
thin-client computing model, and to determine the factors that govern the performance of these
architectures.

To assess the viability of the thin-client computing model, we measured the performance of five
popular thin-client platforms running over a wide range of network access bandwidths. Our results show
that current thin-client solutions generally work well in a LAN environment, but their performance
degrades significantly when they are used in today’s broadband environments.

We also find that the efficiency of the thin-client protocols varies widely. In some cases, the efficiency
of the thin client protocol for web applications is within a factor of two of standard web protocols, while
others are 30 times more inefficient. We analyze the differences in the various approaches and explain the
impact of the underlying remote display protocols on overall performance.

1 Introduction

In the last two decades, the centralized computing model of mainframe computing has shifted to the
more distributed model of desktop computing. But as these personal desktop computers become ubiquitous
in today’s large corporate and academic organizations, the total cost of owning and maintaining them can
become unmanageable. In response to this threat, there is a growing movement to return to a more
centralized and easier-to-manage computing strategy. The thin-client computing model is the embodiment
of that movement.

The goal of the thin-client model is to centralize computing resources, with all the attendant benefits of
easier maintenance and cheaper upgrades, while maintaining the same quality of service for the end user
that could be provided by a dedicated workstation. In a thin-client computing environment, end users move
from full-featured computers to thin clients, lightweight machines primarily used for display and input and
which require less maintenance and fewer upgrades. Organizations then provide computing services to their
end users' thin clients from high-powered servers over a network connection. Server resources can be
shared across many users, resulting in more effective utilization of computing hardware.

While thin-client computing resembles a return to the days of mainframe computing, an important
difference is that today’s users can no longer be satisfied by dumb terminals that only input and output
ASCII text. Users today are accustomed to more sophisticated graphical user interfaces which enhance their
productivity. Thin clients must be able to support these graphical computing environments effectively to
meet the demands of today’s users.

Because of the potential cost benefits of thin-client computing, a wide range of thin-client platforms
have been developed, including Citrix Metaframe, Microsoft Terminal Services, AT&T VNC, and others.
[1, 4, 9, 12, 17, 19, 23] Some are designed specifically for use over high-bandwidth local area networks,
while others attempt to provide quality service over slow network connections. Some application server
providers (ASPs) are even offering thin-client service over wide area networks such as the Internet [6, 8,
16]. The growing popularity of these systems makes it important to develop techniques for analyzing their
performance, to assess the general feasibility of the thin-client computing model, and to compare different
thin-client platforms and determine the factors that govern their performance.

The main idea common to these modern thin-client platforms is the use of a remote display protocol.
This key technology enables graphical displays to be served across a network to a client device, while all
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application logic is executed on the server. Clients can be much simpler than in older systems such as X
[18], since the window system executes on the server as well. Using such a protocol, the client transmits
user input to the server, and the server returns screen updates to the client. In general, no unrecoverable
state is stored on the client at all.

While many thin-client platforms and protocols have been developed, most of these systems and their
protocols are proprietary, and few of the vendors have provided detailed performance measurements. It is
difficult both to compare the performance of these solutions and to determine whether any of them can
support realistic workloads. Of particular concern is the support they provide for web-based and
multimedia-oriented applications, which have different and significantly higher resource demands than the
office productivity applications for which many of these platforms were originally designed.

To assess the viability of the thin-client computing model, we measured the performance of a wide
range of thin-client computing solutions in a variety of network operating conditions. We considered five
different thin client platforms on four different operating systems running over a wide range of network
access bandwidths. The thin client platforms we used to perform these head-to-head comparisons were
Citrix Metaframe, Microsoft Windows Terminal Server, LapLink 2000, AT&T VNC, and Sun
Microsystems Sun Ray. In particular, we focused on evaluating these thin client platforms with respect to
their performance on popular Web and multimedia applications.

Our results show that current thin-client solutions generally work well in a LAN environment, their
performance almost indistinguishable from that of full-featured desktop PCs, but they are inadequate for
use over bandwidths currently available in wide area networks.

We also find that the efficiency of the thin-client protocols varies widely. In some cases, the efficiency
of the thin client protocol for web applications is within a factor of two of standard web protocols, while
others are 30 times more inefficient. We analyze the differences in the various approaches and explain the
impact of the underlying remote display protocols on overall performance.

This paper is organized as follows: Section 2 presents the thin-client computing model in further detail
and discusses the thin client platforms evaluated in our study. Section 3 details the experimental testbed and
methodology we used for our study. Section 4 discusses our measurements and performance results.
Section 5 describes related work. Finally, we present some concluding remarks and directions for future
work.

2 Thin-Client Computing

The typical thin-client platform consists of a client application that executes on a user's local desktop
machine and a server application that executes on a remote system. The end user’s machine can be a
hardware device designed specifically to run the client application or simply a low-end personal computer.
The remote server machine typically runs a standard server operating system, and the client and server
communicate across a network connection between the desktop and server. The client sends input data
across the network to the server, and the server returns display updates.

There are many design choices to be made within this basic framework, and as the results of our
testing demonstrate, these can have a dramatic impact on the performance of these systems. We studied a
wide range of current systems to reach our conclusions, including Citrix Metaframe and Microsoft
Windows Terminal Services (both the Windows NT and Windows 2000 versions of these systems), AT&T
VNC, Sun Ray, and LapLink. Table 1 summarizes the design of the systems we examined.

Perhaps most critical of these design decisions is the choice of encoding for display updates. It is
important to note that simply sending raw pixel data directly to a display would be prohibitively expensive
at current network bandwidths: even a 640x480 display with 8-bit pixel values would require over 100
Mbps at typical monitor screen refresh rates. Some thin-client platforms, such as Sun Ray and VNC,
process updates to the display on the server and transmit only compressed pixel data representing the new
display to the client. Others, like Citrix Metaframe and Microsoft’s Terminal Services, opt for a higher-
level encoding that is more closely tied to the operating system’s windowing and display commands. In this
case, graphics commands are transmitted from the server to the client, which is responsible for processing
the updates.

Of similar importance is the timing of display updates. Most systems rely on the server to push out
updates as they are generated, but some such as Metaframe and Terminal Services perform additional
optimizations, bundling graphics commands together and discarding unnecessary interim commands before
sending out an update. On the other hand, a client-pull technique is used in VNC, where the server refrains
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from sending an update until a request is received from the client, and then sends only the most recent
version of the display.

The client may also speed display updates by caching some amount of screen state locally, so it can
perform at least some screen update operations without input from the server. Some clients may save the
current contents of the display framebuffer so they only need incremental updates and can possibly re-use
regions of the display that have merely been moved (as when a window is dragged across the screen).
Others may cache high-level graphics primitives that are likely to be reused.

The quality of the display can also vary greatly among thin-client systems. Many systems have
restrictions on resolution and color depth that limit the amount of data that must be transmitted in display
updates but also leave the end user with a worse visual experience. Others such as the Sun Ray system can
provide true color and high resolution graphics at the cost of increased bandwidth consumption.

The client machine can range from a full computer running an independent operating system to a
simple network appliance like Sun Ray. Many of the other design decisions stem from this choice, which
also has implications for the cost, reliability, and maintainability of the system. Simpler appliances have
obvious advantages in cost, both in short-term purchase price and the long-term cost of upgrades and
support, but are less tolerant of network failures and may make the system as a whole less scalable as a
result of increased demands on the server. While we primarily focused on the basic performance of the
platforms, this characteristic of any system is crucial when making an overall assessment.

3 Experimental Design

The goal of our research was to compare thin-client systems to assess their basic display performance
and their feasibility in various network environments. We considered the five thin-client platforms
discussed in Section 2: Citrix Metaframe, Windows Terminal Services, AT&T VNC, LapLink 2000, and
Sun Ray. These platforms were chosen both because of their popularity as well as their architectural design
differences. To evaluate their performance, we designed an experimental testbed and various experiments
to exercise each of the platforms on single-user web-based and multimedia-oriented workloads at varying
bandwidths.

In this section, we describe our hardware and software testbed setup in detail. We also describe the
metrics we used to judge performance as well as the specific benchmarks and different computing
environments used in our tests. We used several standard Web-based industry benchmarks for our
application workloads, and we considered both latency in display updates and the amount of data
successfully transferred to the client in assessing performance.

Platform
(Server OS)

Display
Encoding

Screen Updates Client Caching Client
Cache Size

Transport
Protocol

Client
Display

Microsoft
Terminal
Services
(WinNT,
Win2K)

Compressed
graphics

Server buffer,
pushed
adaptively

Glyphs, small
bitmaps in
memory; large
bitmaps on disk

1.5 MB
RAM,
10MB disk
in Win2K

TCP/IP Up to
256
colors

Citrix
Metaframe
(WinNT,
Win2K)

Compressed
graphics

Server buffer,
pushed
adaptively

Glyphs, small
bitmaps in
memory; large
bitmaps on disk

3MB RAM,
Percent of
disk (1%
default)

TCP/IP Up to 24-
bit color

LapLink 2000
(WinNT)

DDI graphics,
sent to client
GDI

Each DDI call
sent separately

Glyphs, small
bitmaps

1024 objects TCP/IP 256
colors

AT&T VNC
(Linux)

2D run-length
encoded pixels

Screen
differences sent
on client pull

None N/A TCP/IP Up to 32-
bit color

Sun Ray
(Solaris)

Compressed
pixels

Update pushed
on each window
system
command.

None N/A UDP/IP Up to 24-
bit color

Table 1: Thin-client platform characteristics
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3.1 Experimental Testbed
Our testbed was designed to allow us to perform well-controlled experiments on the performance of

the various thin-client platforms at varying bandwidths. Because of the proprietary nature of most of the
platforms, the testbed was designed to enable us to employ non-intrusive measurement techniques for
evaluating thin-client performance. To ensure a level playing field, where possible we used the same
hardware for all of our tests; the only change we made to our configuration was for testing the Sun Ray
platform, which only runs on Sun machines.

Figure 1 shows our basic testbed configuration, which consisted of seven machines, five of which were
active for any given test. The testbed consisted of two pairs of thin client/server systems, a network
simulator machine, a packet monitor machine, and a benchmark server. The features of each system are
summarized in Table 2, along with the SPEC95 performance numbers for the CPU in each system.

Four of the machines in the testbed were two sets of client/server systems, a Sun Ray thin client and
thin server, and a PC thin client and thin server for running all of the other thin-client systems. The Sun thin
server was used only for Sun Ray testing while the PC thin server was configured as a quad-boot machine
to support the various PC thin-client systems and operating systems used for our experiments. As
summarized in the hardware description in Table 2, there were some performance differences between the
Sun and PC client/server systems. Overall, the Sun Ray client/server hardware was less powerful than the
PC client/server hardware, particularly on the client-side in which the Sun Ray client used a lowly 100
MHz uSPARC CPU while the PC client uses a 300 MHz Pentium II CPU. As we discuss in Section 4, the
large difference in client processing power was not a factor in our evaluations. However, a number of the
experiments were limited by processing power on the server so the difference in the server processing
power between Sun and PC server needs to be factored into those results.

As shown in Figure 1, the network simulator machine was placed in the middle of the network between
the thin client and thin server machines to control the available network bandwidth between the thin client
and server. This was done using a dedicated PC installed with two 100 Mbps Ethernet interfaces running
The Cloud [3], a software network bandwidth simulator that could vary the effective network bandwidth
between the two network interfaces. The thin clients and thin servers were separated from one another on
isolated 100 Mbps networks which were then connected via the network simulator by connecting the
server-side network to one of the network interfaces in the network simulator PC and connecting the client-
side network to the other network interface. We refer to the server-side interface as the East gateway and
the client-side interface as the West gateway. The Cloud software could then be used to vary the
bandwidths on either of the two gateways from the maximum 100 Mbps to as little as 2400 bps. To ensure
that this simulator did not itself introduce extra delay into our tests, we measured round-trip ping times with
and without the simulator between the client and the server. There were no significant differences and
round-trip ping times were roughly 0.6 ms in both cases.

A packet monitor was used in the testbed to monitor and record traffic on the network between the
client and the server. The packet monitor used was a PC running Etherpeek 4 [7], a software packet
monitor that timestamps and records all packet traffic visible by the PC. As shown in Figure 1, the packet
monitor was generally attached to the client-side network to monitor client-side network traffic, though it
could be moved to other parts of the testbed to monitor server-side traffic as well. In order to use the packet
monitor to capture all packet traffic being sent in both directions between the thin client and server, hubs
were used in the network in our testbed. Since traffic going through a hub is broadcast to all other machines

Sun Thin ServerPC Thin Server
Packet

Monitor
Network
Simulator

Benchmark
ServerPC Thin Client

Sun Thin Client

West Hub East Hub Benchmark Hub

Figure 1: Testbed configuration
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connected to the hub, the packet monitor could then be used easily to record packet traffic passing through
any hub between the client and server by simply connecting the packet monitor to the respective hub.

We used a dedicated PC as a packet monitor to minimize the effect of our measurements when running
the thin-client systems. A limitation of this network setup is that the hubs are half-duplex, so that traffic
cannot be sent through the hub from client to server and from server to client at the same time. As we
discussion in Section 4, since most data in these thin-client platforms is traveling from the server to the
client in any case, it is unlikely that the half-duplex network would introduce significant delays for our
experiments. Other options are possible, each with its disadvantages. An alternative would be to run a
packet monitor on the thin client or thin server, but Etherpeek is highly resource-intensive and would
undoubtedly adversely affect our performance results. Furthermore in the case of the Sun Ray thin client
device, it is not possible to run a packet monitor on the client. Another alternative would be to use port-
mirroring switches to support full-duplex network connections, but mirroring typically would only allow
monitoring of either client to server traffic or vice versa, not both at the same time.

Finally, we also had a separate benchmark server, which was used for serving web-based workloads to
the thin client platforms. The benchmark server was used to run the Ziff-Davis i-Bench benchmark suite
[10]. To ensure that network traffic from the benchmark server did not interfere with the network
connection between thin client and thin server, the benchmark server was connected to the testbed using a
separate hub, as shown in Figure 1. Each thin server had two 100 Mbps network interfaces, one connected
to the network simulator going to the client and the other connected to the benchmark server.
3.2 Application Benchmarks

To measure the performance of the thin-client platforms, we used a simple Java latency benchmark and
a selection of benchmarks from the Ziff-Davis i-Bench benchmark suite, version 1.01. The Java latency
benchmark was used to measure the latency of basic operations on a thin-client platform, such as
responding to a single keystroke. The i-Bench benchmarks used were the Web Text Page Load and Flash

Role / Model Hardware OS / Window System Software CPU
SPEC95

PC Thin
Client
NEC Direction
SPL300

300 MHz Intel PII
128 MB SDRAM
6 GB Disk
3COM 3C905 100BaseT NIC
Matrox G400 Max w/32 MB
SDRAM

MS Win NT 4.0 Workstation SP6 Citrix ICA Win32 Client
MS RDP4 Client
MS RDP5 Client
LapLink 2000 Client
VNC Win32 3.3.3r7 Client
Netscape Communicator 4.7

11.9 int
8.82 fp

Sun Thin
Client
Sun Ray I

100 MHz Sun uSPARC IIep
8 MB RAM
10/100BaseT NIC

Sun Ray OS N/A 1.6 int
2.0 fp

Packet
Monitor
PC

400 MHz Intel PII
128 MB SDRAM
21 GB Disk
3COM 3C905 100BaseT NIC

MS Win NT 4.0 Workstation SP6 AG Group's Etherpeek 4 15.85 int
12.15 fp

Network
Simulator
NEC Direction
SPL300

300 MHz Intel PII
128 MB SDRAM
6 GB Disk
2 3COM 3C905 100BaseT NICs

MS Win NT 4.0 Server SP6 Shunra Software The Cloud 1.1 11.9 int
8.82 fp

PC Thin
Server
Dell Dimension
T550

550 MHz Intel PIII
128 MB SDRAM
21 GB Disk
2 3COM 3C905 100BaseT NICs

MS Win 2000 Advanced Server
MS Win NT 4.0 Terminal Server
MS Win NT 4.0 Workstation SP6
Caldera OpenLinux 2.4, Xfree86
3.3.6, KDE 1.1.2

Citrix Metaframe 1.8 Win NT
Citrix Metaframe 1.8 Win 2000
MS Win NT 4.0 Terminal Server
MS Win 2000 Terminal Services
LapLink 2000
AT&T VNC 3.3.3r2 for Linux
Netscape Communicator 4.7

22.2 int
15.0 fp

Sun Thin
Server
Sun Ultra-10
Creator 3D

333 MHz UltraSPARC IIi
384 MB RAM
9 GB Disk
2 10/100BaseT NICs

Sun Solaris 7, OpenWindows
3.6.1, CDE 1.3.5

Sun Ray Server 1.2_10d Beta
Netscape Communicator 4.7

14.2 int
16.9 fp

Benchmark
Server
Dell Dimension
T550

550 MHz Intel PIII
128 MB SDRAM
21GB Disk
3COM 3C905 100BaseT NIC

MS Win NT 4.0 Server SP6 Ziff-Davis i-Bench 1.01
MS Internet Information Server

22.2 int
15.0 fp

Table 2: Testbed summary
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benchmarks, which can be used to provide a measure of web-based and
multimedia-oriented application performance. All of the benchmarks
were designed to be executed from within a web browser to provide a
common application environment across different platforms. Figure 2
shows screenshots of these three benchmarks in operation.

The latency benchmark used was a small Java applet that permitted
us to run four separate tests: typing a character, scrolling text, filling a
screen region, and downloading an image. The typing test took a single
keystroke as input and responded by displaying a 12-point capital letter
‘A’ in sans serif font. The scrolling test involved scrolling down a page
containing 451 words in 44 lines in 12-point sans serif font, with 21 of
the lines displayed in a 160x316 pixel area at any one time. The screen
fill test would respond to a mouse click by filling a 216x200 pixel area with the color red. The image
download test would respond to a mouse click by downloading and displaying a 37 KB image in GIF
format at 320x240 pixels in size and at a resolution of 72 dpi.

The Web Text Page Load benchmark is a Javascript-controlled load of a sequence of 54 web pages
from the i-Bench benchmark server. Each page is downloaded and then programmatically scrolled down
200 pixels. The pages contain both text and bitmap graphics, with some pages containing more text while
others contain more graphics. Some common elements were included on each page, including a blue left
column, a white background, a PC Magazine logo and other small graphics. The Javascript cycles through
the page loads twice and reports the elapsed time in milliseconds as a separate web page. Including the final
results page, a total of 109 web pages are downloaded during this test.

The Flash benchmark streams a 98 KB Macromedia Flash animation clip from the i-Bench benchmark
server. The animation clip uses vector graphics and contains 315 550x400 frames. The test measures the
frame rate observed during the playback of the animation.
3.3 Measurement Methodology

For our evaluation study, we ran the three application benchmarks on each of the platforms and used
the network simulator to vary the network bandwidth between client and server to examine the impact of
network bandwidth on thin-client performance. All tests were run on each system at the bandwidths listed
in Table 3. Eight different network bandwidths were considered, representing LAN, T1, DSL, and ISDN
bandwidth connections. We focused our evaluation on network bandwidth and did not consider the
different network latencies associated with different network technologies, which is beyond the scope of
this paper.

Two key issues that needed to be addressed in measuring the performance of thin-client platforms on
different operating systems were application environment differences and the proprietary black-box nature
of almost all the thin-client systems. To minimize application environment differences, we used common
thin-client configuration options and common applications across all platforms whenever possible. For all
of our experiments, the video resolution of the server was set to 1024x768 with 24-bit color and the thin
client was set to 800x600 resolution with 8-bit color, except for Sun Ray. 8-bit color depth was used for the
thin clients to provide a fair comparison with those clients that could not support 24-bit color. Windows
Terminal Services and LapLink only support up to 8-bit color, and Citrix Metaframe only introduced 24-bit
color support a few weeks ago. For Sun Ray, the client color depth was set to 24-bit color because the Sun

Network Type
Simulated

Bandwidths
Tested

LAN 100 Mbps
10 Mbps
4 Mbps

T1 1.5 Mbps
DSL 768 Kbps

512 Kbps
ISDN 256 Kbps

128 Kbps
Table 3: Bandwidths tested

Java Latency Test Web Page Load Test Flash Video Test

Figure 2: benchmark screenshots
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Ray display protocol is based on a 24-bit color encoding. Displaying in 8-bit color requires the Sun Ray
server to convert all pixels to 24-bit mode before they are sent over the network. As a result, displaying in
8-bit color reduces the display quality, increases the server overhead, but does not reduce the bandwidth
requirements. Since disk caching was turned off by default in those platforms that supported it and disk
caching was not supported on VNC and Sun Ray, we did not enable disk caching for our comparative
measurements.

Since all of the benchmarks can be launched from a web browser, we used Netscape Navigator 4.7 to
execute all of the benchmarks, as it is available on all the platforms in question. The browser's memory
cache and disk cache were enabled but cleared before each test run. In all cases, the Netscape browser
window was 800x600 in size, so the region being updated was the same on each system. Nevertheless,
Netscape on Windows (Windows NT, Windows 2000) performs somewhat differently from Netscape on
Unix (Linux, Solaris). For instance, on Unix, fonts appear smaller by default and a gray blank page appears
between page downloads which does not appear on Netscape on Windows. These effects would tend to
increase the amount of data that would need to be transferred on screen updates using a Unix-based thin-
client platform. Our experiences with various thin-client platforms indicate that these effects are minor in
general, but should be accounted for when considering small thin-client performance differences across
Unix and Windows systems.

Since the user-perceived performance when running on a thin client is based on what is displayed on
the client-side of the system, we measure performance of the thin-client platforms tested at the client-side.
However, this cannot be done by simply running a measurement application program on the thin-client
system since all applications are executed on the server-side. Therefore, application performance results
reported by the application benchmarks may not be an accurate reflection of client-side performance. For
instance, the latency seen by an application running on a thin-client system is generally just the latency on
the server-side and does not include the end-to-end latency that a user would perceive at the client side.
Similarly, the frame rate reported by the Flash benchmark measures the frame rate as rendered on the
server, but if not all the frames are sent to the client for display, then the frame rate reported by the Flash
benchmark would give an overly optimistic view of performance. This problem is exacerbated by the fact
that all of the thin-client platforms except for VNC are proprietary black box systems, making it harder to
gather client-side performance measurements.

Since we could not peer into the black-box thin-client, our solution to this problem was to use the
packet monitor to gather measurements on the client-side. To measure the results from the latency
benchmark from user input to client output, we used the packet monitor to determine when the user input is
first sent from client to server and when the screen update finished sending from server to client. The
difference between these times was used as a measure of latency. For measuring the Web and Flash
benchmarks, we combined application performance measurements on the server with network traffic
measurements gathered by the packet monitor on the client-side. The server-side application measurements
indicate application performance. The client-side data transfer measurements at different network
bandwidths can indicate how much of the screen updates generated on the server-side are actually delivered
to the client. For instance, if the Flash benchmark reports the same frame rate at both 100 Mbps and 128
Kbps network access bandwidths but delivers 3 times more data at the 100 Mbps bandwidth, the real client-
side performance at 100 Mbps is 3 times better than the performance at 128 Kbps. An underlying
assumption here is that the thin-client platform does not adaptively compress screen updates based on
network bandwidth. However, none of the platforms considered in this study perform such adaptive
compression.

As a baseline measure, we also conducted the same set of experiments using the PC thin server directly
as a normal PC “fat” client. We found that the baseline results for the benchmark tests were fairly similar
for the PC running Windows NT, Windows 2000, and Linux. Linux performed slightly worse at lower
bandwidths and slightly better at higher bandwidths, but in general all three were close enough that we
discuss the results in the Windows NT case in Section 4.

4 Measurements and Results

We ran each of the three application benchmarks on the baseline PC platform and the five thin-client
platforms on different operating systems. The eight specific platform configurations considered were PC
running Windows NT 4.0 Server (WinNT Server), Microsoft Terminal Server RDP4.0 on Windows NT 4.0
Terminal Server Edition (RDP WinNT), Microsoft Terminal Services RDP 5.0 on Windows 2000 (RDP
Win2K), Citrix Metaframe 1.8 on Windows NT 4.0 Terminal Server Edition (Citrix WinNT), Citrix
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Chart 3: Latency Test
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Metaframe 1.8 running on Windows 2000 (Citrix
Win2K), LapLink 2000 on Windows NT 4.0 Terminal
Server Edition (LapLink WinNT), AT&T VNC on Linux
(VNC Linux), and Sun Ray. We also ran LapLink 2000
on Windows 2000 and VNC on Windows NT and
Windows 2000. However, LapLink 2000 did not function
at all on our Windows 2000 configuration and the
Windows VNC server implementation is known to be
implemented poorly [25] and performed much worse than
the Linux version of VNC. As a result, we did not report
detailed results for LapLink 2000 on Windows 2000 or
VNC on Windows. Below we provide some basic
characterization of the client-side component of each thin-
client system, discuss the results from the latency
benchmark testing, and describe the results from the Web
and Flash benchmark tests.
4.1 Memory Footprint

To provide an indication of how thin a thin client is, Chart 1 shows the sizes of the various clients in
the thin-client platforms, both in terms of the size of the primary executable file and its memory footprint.
Except for Sun Ray which is a hardware thin client, all of the other clients were measured running on the
PC client running Windows NT 4.0 Workstation. The VNC client was the smallest by far with a memory
footprint of less than 300 KB and an executable file of just 172 KB. The Sun Ray client had only 8 MB of
memory and used just 2 MB during execution [19]. At the other end of the spectrum, the Citrix client
required almost 10 MB of memory, which is comparable to the memory requirements of a Netscape web
browser. LapLink also had a large file size and a large memory footprint, which was not surprising when
considering that the same software is used for both the client and the server. In general, the resources
required by clients in platforms that use graphics encoding for display updates were significantly higher
than those needed by clients in the platforms that use pixel encodings (Sun Ray and VNC).
4.2 Latency Benchmark Results

We ran the latency benchmark using each thin-client platform at the full 100 Mbps network bandwidth
to measure the latency of each of the thin-client platforms when network capacity was not the limiting
factor. We measured both the latency and the data transferred for each of the four operations, draw letter,
fill red box, scroll text, and load bitmap. These results are shown in Charts 2 and 3, respectively. Both
charts show substantial variations in the latency and data transfer measurements across different platforms.

To achieve good subjective performance, the latency between user input and system response should
be below the threshold of human perception. For simple tasks such as typing, cursor motion, or mouse
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selection, system response time should be less than 50-150 ms to keep users from noticing a delay [20].
Chart 2 shows most of the thin-client platforms performed all operations in less than a second, but not in
less than 150 ms. Only VNC and Sun Ray were able to complete any operations within 150 ms. VNC
completed the basic draw letter, fill box, and scroll text operations in less than 100 ms while Sun Ray
completed the draw letter operation in roughly 150 ms. Note that both VNC and Sun Ray ran using Unix
servers and employed a pixel-based encoding approach. Among the Windows-based thin clients, Citrix
Win2K had the best performance overall except for loading the image bitmap, in which it was one of the
worst. LapLink WinNT had by far the worst performance of all the systems, requiring more than 2.5
seconds just to display a small bitmap image. We examined the load on the LapLink server and found that
the server was completely loaded when generating display updates, indicating that the server load and not
the bandwidth was the limiting factor in this case.

Comparing Chart 2 with Chart 3, we can see that the latency and the data transferred were not at all
correlated in many cases. While VNC and Sun Ray had less latency for most of the tests, they also required
more data transfer. For instance, Sun Ray sent the second largest amount of data for the load bitmap test,
but had one of the smallest latencies. Considering that Sun Ray is operating in 24-bit display mode, it is not
surprising that it sends more data than the other platforms. On the other hand, LapLink WinNT sent the
smallest amount of data for the load bitmap test, but had the largest latency. We also see that the load
bitmap test resulted in the largest variation in data transfer across platforms. In loading the 37K bitmap, the
amount of data transferred varied from 47K for LapLink WinNT to over 300K for RDP WinNT.

There are marked differences between the versions of RDP and Citrix running on different Windows
operating systems. For RDP, there was a dramatic difference between the performance of RDP WinNT and
RDP Win2K. The difference is due to improvements in the RDP protocol from RDP 4.0 used in Windows
NT 4.0 Terminal Server Edition to RDP 5.0 used in Windows 2000, as well as problems in the
implementation of the compression feature in RDP 4.0. For Citrix, there is a smaller performance
difference between Citrix WinNT and Citrix Win2K. However, for all of the operations except the basic
draw letter operation, the version of Citrix that required more data transfer on the operation also resulted in
lower latency. For instance, in the scroll text test, Citrix WinNT took about 50 percent longer than Citrix
Win2K to perform the operation, but sent almost half as much data as Citrix Win2K.

While latency and data transfer requirements were not correlated at this high network bandwidth, we
would expect the data transfer requirement would play a more significant role at lower network
bandwidths. Our results suggest that pixel-based encoding approaches may be less complex and hence
faster, but may also be less efficient in terms of data transfer requirements. As a result, the graphics-based
encoding approaches that require less data transfer are more likely to yield better performance at lower
bandwidths.
4.3 Web Page Load Benchmark Results

We ran the Web benchmark on each of the thin-client platforms using network bandwidths from 128
Kbps to 100 Mbps, as listed in Table 3. We also ran the Web benchmark on the baseline PC platform for
comparison. For each run, we measured the total time required to display all 109 web pages of the Web
benchmark and logged complete packet traces using the packet monitor. We found that at high bandwidths,
the page load times were limited by server speed as the server was completely busy. Since server speed was
the limiting factor at high network bandwidths, we normalized the page load times across PC and Sun thin-
client platforms according to the relative SPEC95int performance of the PC and Sun servers to provide a
more fair comparison. Based on the SPEC95int numbers in Table 2, the page load times for the Sun server
were normalized by a factor of 0.64. The total normalized web page download times and total data
transferred for each run are shown in Charts 4 and 5, respectively.

As shown in Chart 4, almost all of the platforms completed the Web benchmark in less than 50 seconds
at network bandwidths of 4 Mbps or greater, corresponding to an average of less than half a second per
page. Though there were quantitative differences in performance among the platforms, we found that a
download speed of less than 50 seconds provided a subjectively adequate web browsing experience.

The one exception was LapLink, which required almost an order of magnitude more time to complete
the Web benchmark. However, as shown in Chart 5, the excess load time for LapLink was not due to
excess data transfer requirements. LapLink required at most twice as much data transfer as the other
Windows-based thin-client platforms, which is not surprising given that all of the Windows-based thin-
client systems are based on some form of DDI graphics encoding. The key difference between LapLink and
the other platforms is that it does not buffer any draw commands at the server, but instead sends each
individual command to the client. The server then busy waits until the client informs the server that it has
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completed the respective draw command. The much longer draw command latency causes LapLink
performance to suffer.

At network bandwidths below 4 Mbps, the performance of the thin-client platforms begins to degrade.
As shown in Chart 4 and 5, RDP and Citrix behave in a similar manner to the baseline PC client by taking
longer to complete the Web benchmark as the network bandwidth decreases, but continuing to send the
same amount of data even at lower bandwidths. On the other hand, VNC and Sun Ray do not take longer to
complete the Web benchmark at lower bandwidths, but instead lose data resulting in missed or incomplete
screen updates. As shown in Chart 5, VNC and Sun Ray transfer less and less data at the lower network
bandwidths unlike the other platforms which all transfer roughly the same amount of data. As described in
Section 2, the VNC server only sends display updates in response to client requests. When update requests

Chart 5: Web Page Data Transferred
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come slowly, as in a low-bandwidth environment, fewer updates are sent. As a result, the screen is
refreshed very infrequently, with many intermediate screens skipped. Subjectively, the method of skipping
screen updates in VNC provided a lower quality web browsing experience than sending all the screen
updates and simply taking longer to load the web pages, as was done in RDP and Citrix. While Sun Ray
does not use a client pull screen update method like VNC, it also skipped screen updates at lower
bandwidths. The reason for this was that at lower bandwidths, the network becomes congested and the
UDP packets used to send the screen updates end up being lost. Due to excessive packet loss, Sun Ray
simply ceased to function properly at bandwidths below 768 Kbps, which is why there are no Sun Ray
results shown in Charts 4 and 5 at bandwidths below 768 Kbps.

At the lower network bandwidths, the amount of data transfer required by each platform becomes the
dominant performance factor. At the lower bandwidths, the baseline WinNT server performed the best of
the platforms because it required the least amount of data transfer. Among the thin-client platforms, Citrix
Win2K performed the best and was the only thin-client platform to complete the Web benchmark without
losing data in less than 50 seconds at the 1.5 Mbps network bandwidth. At the other end, Sun Ray required
the largest amount of data transfer to send it screen updates from server to client. The data transferred using
Sun Ray was more than an order of magnitude more than using Citrix. Since Sun Ray operates using a 24-
bit display protocol, it is not surprising that it requires more data transfer to send the screen updates.
Nevertheless, even if we normalize the Sun Ray data transfer by a factor of 3 to account for the difference
between its 24-bit mode and the 8-bit color used in the other platforms measured, Sun Ray would still send
more than three times as much data as Citrix. While a comparison of Citrix to Sun Ray would suggest that
the graphics-based encoding approach is more efficient for encoding screen updates, we note that VNC
sends less data than RDP WinNT, RDP Win2K, and Citrix WinNT. Instead, the VNC results indicate that
for Web-based applications, a pixel-based encoding approach can encode screen updates with comparable
efficiency as graphics-based encoding approaches.

In comparing the data transfer requirements of the thin-client platforms to the WinNT Server baseline
case, both Citrix Win2K and VNC required only about twice as much data to send their screen updates as
compared to sending HTML and JPEG and GIF images in the WinNT Server baseline case. This is
impressive, particularly considering that the standalone WinNT Server machine is largely receiving plain
text and a few graphic images. As network technologies continue to improve, this factor of two difference
in encoding efficiency may be less significant. Note though that the thin-client platform data transfer
requirements scale with screen size while the WinNT Server baseline data transfer requirements scale with
the total web page size. For larger screen displays, the thin-client platforms would be less efficient relative
to the WinNT Server baseline.

When considering the data transferred, we found that the efficiency varied dramatically. As noted, Sun
Ray sent almost 25 times the baseline amount of data, and RDP NT was 8 times less efficient. But at least
some of the platforms were within a factor of 2 of the baseline performance. At higher bandwidths, the
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differences in efficiency did not
greatly affect the download time.
Though RDP NT was much less
efficient than Citrix 2K, for
instance, at 100Mbps their
download times were almost
identical. However, as bandwidth
decreased, the more efficient
platforms performed significantly
better.

As no user input was entered
during the course of the test, all of
the data sent from the client
represented control information.
The amount of control data sent
was smaller than the amount of
display data, as we would expect,
but some of the platforms
transmitted surprisingly large
amounts of control data. Control data
is 10% of the data sent by LapLink,
one possible source of that platform’s
inefficiency and long download
times. Sun Ray, on the other hand,
sends almost no control data even
though it sends a great deal of display
data, reflective of the simplicity of the
client.

It is also instructive to consider
the number and size of the packets
being sent between the client and
server. Charts 6 and 7 show the size
of the packets in each direction, while
Charts 8 and 9 show the relative
amounts of display and control
packets and data sent for each
platform.

As no user input was entered
during the course of the test, all of the data being sent from the client to the server represented control
information. The amount was significantly smaller than the amount of display data, as we would expect,
but some of the platforms send surprisingly large amounts of control data. Control data accounts for 10% of
the data and 50% of the packets sent by LapLink, another possible source of that platform’s inefficiency
and long download times.

We found another explanation for LapLink’s poor performance in the packet sizes it sends: most
display data is sent in relatively small packets, while control data is sent in relatively large packets. The
other platforms pack the large quantities of display data much more efficiently, and send many fewer
packets to boot. This is clearly an important factor in achieving reasonable efficiency and performance.
4.4 Flash Benchmark Results

We ran the Flash animation test on each of the thin-client platforms using the network bandwidths
listed in Table 3, and also ran the benchmark on the baseline platforms for comparison. Charts 10 and 11
display our results. As the packet size and ratio of display data to control data for these tests closely
resembled the Web Page Load results, we have not included charts of these results.

We found that a frame rate close to 18 fps produced good subjective results, with smooth display, no
skipped screens, and no tearing or jerky movement. The animation was essentially unusable at frame rates
below 8 fps. The 98KB animation downloaded completely to the server prior to playback, so the bandwidth
did not affect the frame rate on the baseline. However, we examined the time required for this download in
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the baseline case and found that there were no significant delays except a brief one when the bandwidth
was limited to 128 Kbps.

In general, our results supported the conclusions drawn from the Web Page Load test and the latency
testing. All the platforms experienced a similar fall-off in performance at T1 bandwidths or below,
confirming our findings that LAN bandwidths are required to support multimedia applications.

Terminal Server and Metaframe again showed good performance at the LAN bandwidth level, with
slight tearing apparent at the lower end of that spectrum for both of them. At lower bandwidths, however,
playback became jerky and slow. LapLink’s performance remained very poor, both quantitatively and
subjectively, regardless of the bandwidth. All three of these platforms, with the exception of Metaframe
under Windows 2000, varied mainly in the speed of the playback; they only skipped a few frames if any
and just played back slowly at lower bandwidths.

Chart 10: Flash Test Frame Rate
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The SunRay system was subject to significant bandwidth constraints, sending almost 30MB of data,
and only performed well at 100Mbps. Both the frame rate and data transferred degraded at any lower
bandwidths. Our charts do not include frame rate results for broadband or lower bandwidths, as the
benchmark did not even complete below the T1 level. The sheer quantity of data sent by the Sun Ray for
such a small animation is surprising, and suggests that even at LAN levels, this platform could not support
multiple users of video or animation applications since even nine users would completely fill the pipe.
However, there are some undocumented low-bandwidth options in the Sun Ray platform that we did not
use in testing, which might make the platform perform better at lower bandwidths.

As with the web test results, VNC was only slightly less efficient than the platforms with graphics-
based encodings, so again the Sun Ray results are not sufficient cause to rule out a pixel-based encoding
technique. VNC maintained an almost constant rate for the benchmark at all bandwidths, but dropped many
screens on the client’s display at the low end of the range. Its performance was only comparable in
smoothness to the baseline when the data transferred reached a plateau. Again, this is due to the client-pull
method VNC uses for updates.

Interestingly, Citrix Win2K had similar behavior, although Citrix WinNT did not. Citrix Win2K
maintained a constant frame rate from the i-Bench server to the thin server but dropped many frames in
delivering the animation to the client, just as VNC did. Its performance is better measured by examining the
total amount of data transferred instead of the frame rate and was subjectively good at LAN bandwidths.
The update policy is known to have changed for the new version of Citrix on Windows 2000, and this
change indicates that part of the policy change has been to preserve the speed of updates at the expense of
data loss in some cases.

While an adaptive update policy like this clearly can preserve speed, overall performance still suffers
the same kind of fall-off at below-LAN bandwidths, as the data transfer results for Citrix Win2K and
particularly VNC show. In addition, in video and animation applications like the Flash animation, the
number of frames dropped may be a better measure of quality than the speed at which the application
executes. Losing data in favor of preserving speed is a poor choice for an application like this as long as it
is still usable. As we can see from the frame rate results, RDP and Citrix WinNT all had usable if not good
frame rates even when bandwidth was as low as 512 Kbps. By that bandwidth level, Citrix Win2K and
VNC had both dropped almost half of the data transmitted. The animation became unusable more quickly
under the adaptive update policies in this situation.

Citrix Win2K did not drop data in the Web Page Load testing as VNC did, which suggests that Citrix
protocol takes factors other than the available bandwidth into consideration when deciding whether or not
to discard display updates. Future work will investigate what effect server load and other conditions have
on the update behavior.
4.5 Summary

Overall, our results indicate that current thin-client platforms are viable alternatives for a typical LAN
environment. Their requirements, even for many multimedia applications, are well within 10 Mbps, so
almost all of the platforms examined would work well under LAN conditions.

However, it is clear that these platforms cannot support typical, multimedia-intensive workloads over
wide area networks. Even the best protocols require a pipeline of 4 Mbps or better to prevent the network
from becoming a bottleneck. Even at the T1 level their performance degrades significantly, and at lower
broadband levels many of them become unusable. This has major implications for the application service
provider (ASP) model, as many of today's ASPs are attempting to use these thin-client platforms to provide
computing services over the Internet. Our results show that this is currently impractical.

This is not to say that it is impractical for all purposes. Our tests were deliberately graphics-and-
multimedia intensive, and typical office productivity software may function well over WANs. But
multimedia applications ran smoothly at even DSL bandwidths on our baseline tests, so excellent
performance with these kinds of applications is possible over broadband connections using standard
desktops. Current users are unlikely to be willing to sacrifice their multimedia environments and
applications if another choice is available.

We found that the efficiency of the various protocols varies widely, with more than an order of
magnitude separating them. Some protocols are highly efficient, within a factor of 2 of the stand-alone
desktop performance, and this efficiency is reflected in their improved performance at lower bandwidths.
We identified several factors that affect efficiency, including the ratio of control data to update data, and
packet size. These are causes for the poor performance of LapLink, which sends a large amount of control
data and packetizes data inefficiently.
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Our results also showed that higher-level encodings are not necessarily ideal for graphics-intensive
multimedia applications with many rapidly changing images. The Sun Ray system, which uses a low-level
pixel-based encoding, performs as well as Metaframe or Terminal Services at high bandwidths, and
provides a much higher resolution and color depth at the same time. And systems with higher-level
encodings like Metaframe do not perform well at low bandwidths despite the greater efficiency of their
protocols. VNC further demonstrates that a pixel-based encoding can be comparable in efficiency to a
graphics-based encoding. Low-level encodings have many potential side benefits, such as platform
independence and more lightweight clients, and this is an important indication that such encodings are
feasible.

We also determined that while adaptive updates can be very useful in handling low-bandwidth network
conditions, they can also cause rapid performance degradation for multimedia applications. This is
particularly true for animation and video, where dropped frames have a greater impact on performance than
increased delays, as seen in our Citrix Win2K and VNC results.

Of the individual platforms, LapLink is clearly the worst, due to a prohibitively high server overhead
and inefficient packetization. The LapLink server was completely loaded during operation, and large
numbers of small packets were constantly being sent. Improvements in bandwidth will be unlikely to
improve this platform’s performance significantly, since the bandwidth is not the bottleneck in this case.
Citrix had the best overall performance of the platforms, functioning reasonably well even at 1.5 Mbps
when most of the other systems began to suffer. While VNC does have an efficient protocol and maintains
download speed and frame rate even at low bandwidth, this does not lead to subjectively good performance
in many cases.

5 Related Work

Despite the growing interest in thin-client computing and the plethora of thin-client platforms that have
been designed, quantitative performance data on thin-client platforms is quite limited. Little previous work
has been done to compare the performance of thin-client platforms against one another in supporting web-
based and multimedia-oriented applications. Thin-client platform vendors such as Citrix and Microsoft
have conducted internal performance testing of their products, but it is unclear how much comparative
evaluation they have done, especially for web and multimedia application performance. Furthermore, the
product literature available from Citrix and Microsoft claim that their thin-client platforms operate well at
even 56K modem speeds. Our results indicate that these claims are greatly overstated. Microsoft has also
published several white papers on Terminal Server that discuss its performance for purposes of capacity
planning [14, 26]. These scalability studies of thin-client computing are complementary to our work.

Several studies have examined the performance of a single thin-client system. Danskin conducted an
early study of the X protocol [5]. Wong and Seltzer have also studied the performance of Windows NT
Terminal Server, focusing on office productivity tools and web browsing performance [27]. Tolly Research
has conducted similar studies for Citrix Metaframe [24]. Schmidt, Lam, and Northcutt examined the
performance of the Sun Ray platform in comparison to the X protocol [19] and reported simulated results
for Sun Ray at different network bandwidths. Our work systematically extends these studies by offering a
comparative viewpoint across all of these platforms on web-based applications over a wide range of
network bandwidths.

Howard presented performance results for various hardware thin-clients based on tests from the i-
Bench benchmark suite [11]. This work suffers from two significant problems in measurement
methodology. First, the experiments only measure benchmark performance at the server-side. They do not
measure data transferred at the client-side and do not account for actual client-side performance. Second,
the work was based on Microsoft Internet Explorer 5.01, which does not properly interpret the Javascript
OnLoad command used in the i-Bench web page load test. This causes successive pages to start loading
before previous pages have completed loading, resulting in unpredictable measurements of total web page
download latencies. Netscape Navigator 4.7 does not suffer from this problem, which is why we used this
browser platform for our work. Our work addresses these measurement issues not addressed in previous
work, covers a broader range of platforms, and discusses a number of the underlying factors that result in
the varying performance across different thin-client systems.

6 Conclusions and Future Work

We have studied the performance of thin-client computing by quantitatively evaluating the
performance of five of the most popular platforms on web and multimedia applications. Our results show
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that performance varies widely across different thin client platforms, but that many of the platforms can
deliver excellent performance over 10 Mbps networks. This makes thin client computing a potentially
effective as well as easier-to-maintain computing solution for LAN environments. However, all of the
platforms that we tested showed noticeable performance problems over networks at lower than 1.5 Mbps
access bandwidths. This indicates that current thin client solutions are not likely to be viable in broadband
environments for web and multimedia applications.

Future research will further probe these architectures to determine what factors control their
performance, and how that performance could be improved. There is also scope for research into the effect
of the underlying operating system on the thin-client performance. We are also exploring other remote
display technologies that might prove to be more effective in broadband environments, in particular better
pixel-encoding techniques that involve intelligent pixel caching and pattern-based pixel compression. In
addition, while we have examined the effects of network access bandwidth on thin client computing
performance, we have not considered other issues such as scalability and reliability, which are also
important dimensions of thin client computing performance. Further research will consider these issues.
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