23 research outputs found

    Luminescent Tris(8-hydroxyquinolates) of Bismuth(III)

    Full text link
    Luminescent homoleptic bismuth(III) complexes have been synthesized by adding several functionalized 8-hydroxyquinolate ligands to bismuth(III) chloride in a 3:1 mole ratio in either ethanol or tetrahydrofuran (THF) solvent. These complexes have been characterized by single-crystal X-ray diffraction (XRD) analysis, UV-vis spectroscopy, fluorescence spectroscopy, and density functional theory (DFT) calculations to determine their structures and photophysical properties. Reversible dimerization of the mononuclear tris(hydroxyquinolate) complexes was observed in solution and quantified using UV-vis spectroscopy. The fluorescence spectra show a blue shift for the monomer compared with homoleptic aluminum(III) hydroxyquinolate compounds. Four dimeric compounds and one monomeric isomer were characterized structurally. The bismuth(III) centers in the dimers are bridged by two oxygen atoms from the substituted hydroxyquinolate ligands. The more sterically hindered quinolate complex, tris(2-(diethoxymethyl)-8-quinolinato)bismuth, crystallizes as a monomer. The complexes all exhibit low-lying absorption and emission spectral features attributable to transitions between the HOMO (π orbital localized on the quinolate phenoxide ring) and LUMO (π* orbital localized on the quinolate pyridyl ring). Excitation and emission spectra show a concentration dependence in solution that suggests that a monomer-dimer equilibrium occurs. Electronic structure DFT calculations support trends seen in the experimental results with a HOMO-LUMO gap of 2.156 eV calculated for the monomer that is significantly larger than those for the dimers (1.772 and 1.915 eV). The close face to face approach of two quinolate rings in the dimer destabilizes the uppermost occupied quinolate π orbitals, which reduces the HOMO-LUMO gap and results in longer wavelength absorption and emission spectral features than in the monomer form

    Erziehungswissenschaftliche Informationsressourcen nutzen

    No full text

    Highly Luminescent Dinuclear Platinum(II) Complexes Incorporating Bis-Cyclometallating Pyrazine-Based Ligands: A Versatile Approach to Efficient Red Phosphors

    Get PDF
    A series of luminescent dinuclear platinum(II) complexes incorporating diphenylpyrazine-based bridging ligands ((LH2)-H-n) has been prepared. Both 2,5-diphenylpyrazine ((LH2)-H-2) and 2,3-diphenylpyrazine ((LH2)-H-3) are able to undergo cyclometalation of the two phenyl rings, with each metal ion binding to the two nitrogen atoms of the central heterocycle, giving, after treatment with the anion of dipivaloyl methane (dpm), complexes of formula \{Pt(dpm)\}(2)L-n. These compounds are isomers of the analogous complex of 4,6-diphenylpyrimidine ((LH2)-H-1). Related complexes of dibenzo-(f,h)quinoxaline ((LH2)-H-4), 2,3-diphenyl-quinoxaline ((LH2)-H-5), and dibenzo{[}3,2-a:2',3'-c]phenazine ((LH2)-H-6) have also been prepared, allowing the effects of strapping together the phenyl rings ((LH2)-H-4 and (LH2)-H-6) and/or extension of the conjugation from pyrazine to quinoxaline ((LH2)-H-5 and (LH2)-H-6) to be investigated. In all cases, the corresponding mononuclear complexes, Pt(dpm)(LH)-H-n, have been isolated too. All 12 complexes are phosphorescent in solution at ambient temperature. Emission spectra of the dinuclear complexes are consistently red shifted compared to their mononuclear analogues, as are the lowest energy absorption bands. Electrochemical data and TD-DFT calculations suggest that this effect arises primarily from stabilization of the LUMO. Introduction of the second metal ion also has the effect of substantially increasing the molar absorptivity and, in most cases, the radiative rate constants. Meanwhile, extension of conjugation in the heterocycle of (LH2)-H-5 and (LH2)-H-6 and planarization of the aromatic system favored by interannular bond formation in (LH2)-H-4 and (LH2)-H-6 leads to further red shifts of the absorption and emission spectra to wavelengths that are unusually long for cyclometalated platinum(II) complexes. The results may offer a versatile design strategy for tuning and optimizing the optical properties of d-block metal complexes for contemporary applications
    corecore