9 research outputs found

    Pros and cons of NRF2 activation as adjunctive therapy in rheumatoid arthritis

    Get PDF
    Rheumatoid arthritis (RA) is an autoimmune disease with an important inflammatory component accompanied by deregulated redox-dependent signaling pathways that are feeding back into inflammation. In this context, we bring into focus the transcription factor NRF2, a master redox regulator that exerts exquisite antioxidant and anti-inflammatory effects. The review does not intend to be exhaustive, but to point out arguments sustaining the rationale for applying an NRF2-directed co-treatment in RA as well as its potential limitations. The involvement of NRF2 in RA is emphasized through an analysis of publicly available transcriptomic data on NRF2 target genes and the findings from NRF2-knockout mice. The impact of NRF2 on concurrent pathologic mechanisms in RA is explained by its crosstalk with major redox-sensitive inflammatory and cell death-related pathways, in the context of the increased survival of pathologic cells in RA. The proposed adjunctive therapy targeted to NRF2 is further sustained by the existence of promising NRF2 activators that are in various stages of drug development. The interference of NRF2 with conventional anti-rheumatic therapies is discussed, including the cytoprotective effects of NRF2 for alleviating drug toxicity. From another perspective, the review presents how NRF2 activation would be decreasing the efficacy of synthetic anti-rheumatic drugs by increasing drug efflux. Future perspectives regarding pharmacologic NRF2 activation in RA are finally proposed.The collaboration of the authors was supported by European COST Action CA20121: Bench to bedside transition for pharmacological regulation of NRF2 in noncommunicable diseases (BenBedPhar). Webpage: https://benbedphar.org/about-benbedphar/. GM, EM, CMN, IVN, EMD and AC were supported by the Romanian Ministry of Research, Innovation and Digitization through the European Regional Development Fund, Competitiveness Operational Program 2014–2020 [the REDBRAIN project, ID: P_37_732

    Role of Nutraceuticals in Modulation of Gut-Brain Axis in Elderly Persons

    Get PDF
    A rather new and somewhat unusual concept connects brain functions to gut microbiota. It is called “gut-brain axis” (or “microbiota-gut-brain axis”) and states that probiotics consumption and a healthy gut microbiota positively influence brain functions related to behavior and cognition. Synergistic with a low chronic grade peripheral inflammation, this faulty barrier exposes the aged brain to negative extra-cerebral signals. Given the quasi-constant failure of pharmacological treatments in neurodegenerative diseases, increased interest is directed toward allopathic medicine, including dietary supplements. Interplay between gut microbiota and central nervous system by immune, neural and metabolic pathways is being explored as a possible modulator of cognitive impairment and behavior disorders. In elderly persons, this axis has been reported to be altered, contributing to systemic inflammation and was also indicated as a possible marker for early frailty in younger population. Currently, there are several clinical trials addressing the relationship between gut microbiota and central nervous system psychiatric disorders and at least one directly investigating whether there is a correlation between composition of gut microbiome, permeability of intestinal barrier and systemic inflammation in patients with dementia. This chapter discusses evidence-based data on positive modulation of gut-brain axis to alleviate behavior and cognition alterations in the elderly

    Classic and targeted anti-leukaemic agents interfere with the cholesterol biogenesis metagene in acute myeloid leukaemia: Therapeutic implications

    Get PDF
    Despite significant advances in deciphering the molecular landscape of acute myeloid leukaemia (AML), therapeutic outcomes of this haematological malignancy have only modestly improved over the past decades. Drug resistance and disease recurrence almost invariably occur, highlighting the need for a deeper understanding of these processes. While low O2 compartments, such as bone marrow (BM) niches, are well‐recognized hosts of drug‐resistant leukaemic cells, standard in vitro studies are routinely performed under supra‐physiologic (21% O2, ambient air) conditions, which limits clinical translatability. We hereby identify molecular pathways enriched in AML cells that survive acute challenges with classic or targeted therapeutic agents. Experiments took into account variations in O2 tension encountered by leukaemic cells in clinical settings. Integrated RNA and protein profiles revealed that lipid biosynthesis, and particularly the cholesterol biogenesis branch, is a particularly therapy‐induced vulnerability in AML cells under low O2 states. We also demonstrate that the impact of the cytotoxic agent cytarabine is selectively enhanced by a high‐potency statin. The cholesterol biosynthesis programme is amenable to additional translational opportunities within the expanding AML therapeutic landscape. Our findings support the further investigation of higher‐potency statin (eg rosuvastatin)–based combination therapies to enhance targeting residual AML cells that reside in low O2 environments

    Regulation of cellular sterol homeostasis by the oxygen responsive noncoding RNA lincNORS

    Get PDF
    We hereby provide the initial portrait of lincNORS, a spliced lincRNA generated by the MIR193BHG locus, entirely distinct from the previously described miR-193b-365a tandem. While inducible by low O2 in a variety of cells and associated with hypoxia in vivo, our studies show that lincNORS is subject to multiple regulatory inputs, including estrogen signals. Biochemically, this lincRNA fine-tunes cellular sterol/steroid biosynthesis by repressing the expression of multiple pathway components. Mechanistically, the function of lincNORS requires the presence of RALY, an RNA-binding protein recently found to be implicated in cholesterol homeostasis. We also noticed the proximity between this locus and naturally occurring genetic variations highly significant for sterol/steroid-related phenotypes, in particular the age of sexual maturation. An integrative analysis of these variants provided a more formal link between these phenotypes and lincNORS, further strengthening the case for its biological relevance

    Macrophages and Stem Cells—Two to Tango for Tissue Repair?

    No full text
    Macrophages (MCs) are present in all tissues, not only supporting homeostasis, but also playing an important role in organogenesis, post-injury regeneration, and diseases. They are a heterogeneous cell population due to their origin, tissue specificity, and polarization in response to aggression factors, depending on environmental cues. Thus, as pro-inflammatory M1 phagocytic MCs, they contribute to tissue damage and even fibrosis, but the anti-inflammatory M2 phenotype participates in repairing processes and wound healing through a molecular interplay with most cells in adult stem cell niches. In this review, we emphasize MC phenotypic heterogeneity in health and disease, highlighting their systemic and systematic contribution to tissue homeostasis and repair. Unraveling the intervention of both resident and migrated MCs on the behavior of stem cells and the regulation of the stem cell niche is crucial for opening new perspectives for novel therapeutic strategies in different diseases

    Helleborus purpurascens—Amino Acid and Peptide Analysis Linked to the Chemical and Antiproliferative Properties of the Extracted Compounds

    No full text
    There is a strong drive worldwide to discover and exploit the therapeutic potential of a large variety of plants. In this work, an alcoholic extract of Helleborus purpurascens (family Ranunculaceae) was investigated for the identification of amino acids and peptides with putative antiproliferative effects. In our work, a separation strategy was developed using solvents of different polarity in order to obtain active compounds. Biochemical components were characterized through spectroscopic (mass spectroscopy) and chromatographic techniques (RP-HPLC and GC-MS). The biological activity of the obtained fractions was investigated in terms of their antiproliferative effects on HeLa cells. Through this study, we report an efficient separation of bioactive compounds (amino acids and peptides) from a plant extract dependent on solvent polarity, affording fractions with unaffected antiproliferative activities. Moreover, the two biologically tested fractions exerted a major antiproliferative effect, thereby suggesting potential anticancer therapeutic activity
    corecore