30 research outputs found

    Simple and objective prediction of survival in patients with lung cancer: staging the host systemic inflammatory response

    Get PDF
    Background. Prediction of survival in patients diagnosed with lung cancer remains problematical. The aim of the present study was to examine the clinical utility of an established objective marker of the systemic inflammatory response, the Glasgow Prognostic Score, as the basis of risk stratification in patients with lung cancer. Methods. Between 2005 and 2008 all newly diagnosed lung cancer patients coming through the multidisciplinary meetings (MDTs) of four Scottish centres were included in the study. The details of 882 patients with a confirmed new diagnosis of any subtype or stage of lung cancer were collected prospectively. Results. The median survival was 5.6 months (IQR 4.8–6.5). Survival analysis was undertaken in three separate groups based on mGPS score. In the mGPS 0 group the most highly predictive factors were performance status, weight loss, stage of NSCLC, and palliative treatment offered. In the mGPS 1 group performance status, stage of NSCLC, and radical treatment offered were significant. In the mGPS 2 group only performance status and weight loss were statistically significant. Discussion. This present study confirms previous work supporting the use of mGPS in predicting cancer survival; however, it goes further by showing how it might be used to provide more objective risk stratification in patients diagnosed with lung cancer

    2nd ESMO Consensus Conference in Lung Cancer: locally advanced stage III non-small-cell lung cancer

    Get PDF
    To complement the existing treatment guidelines, ESMO organises consensus conferences to focus on specific issues. The 2nd ESMO Consensus Conference on Lung Cancer included 35 experts who met to address several questions on non-small-cell lung cancer (NSCLC). Recommendations were made with reference to grade of recommendation and level of evidence. This paper focuses on locally advanced diseas

    Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.

    Get PDF
    The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies

    Subtyping of Undifferentiated Non-small Cell Carcinomas in Bronchial Biopsy Specimens

    Get PDF
    IntroductionThe emergence of treatments for non-small cell lung carcinoma (NSCLC) with differential efficacy and toxicity between subtypes has highlighted the importance of specific pathologic NSCLC subtyping. Most NSCLCs are inoperable, and pathologic diagnosis is made only on small tissue samples that are prone to diagnostic inaccuracy. In a substantial proportion of cases, standard morphology cannot specifically subtype the tumor, necessitating a diagnosis of NSCLC-not otherwise specified (NOS). Histochemical staining for mucin and immunohistochemical (IHC) identification of NSCLC subtype-associated markers could help predict the final subtype of resected NSCLCs diagnosed as NSCLC-NOS on preoperative bronchial biopsy samples.MethodsParaffin sections of 44 bronchial biopsy samples diagnosed as NSCLC-NOS were stained for mucin (Alcian blue/periodic acid Schiff) and thyroid transcription factor 1 by IHC–(markers of adenocarcinoma), and for S100A7, cytokeratin 5/6, high molecular weight cytokeratins, and p63 proteins–markers of squamous cell carcinoma. A predictive staining panel was derived from statistical analysis after comparing staining profiles with the final postsurgical NSCLC subtype. This panel was prospectively applied to 82 small biopsy samples containing NSCLC.ResultsTrue NSCLC subtype of undifferentiated NSCLC samples was best predicted using Alcian blue/periodic acid Schiff plus p63 and thyroid transcription factor 1 IHC, allowing specific subtyping in 73% of NSCLC-NOS cases with 86% accuracy. When applied prospectively, this staining panel showed 100% concordance with specific NSCLC morphologic subtyping in small biopsies.ConclusionThis approach can facilitate treatment selection by accurately predicting the subtype in undifferentiated NSCLC biopsies, reducing to 7% the proportion of cases without a definite or probable histologic subtype
    corecore