1,045 research outputs found

    Effect of root spacing on interpretation of blade penetration tests-full-scale physical modelling

    Get PDF
    The spatial distribution of plant roots is an important parameter when the stability of vegetated slopes is to be assessed. Previous studies in both laboratory and field conditions have shown that a penetrometer adapted with a blade-shaped tip can be used to detect roots from sudden drops in penetrometer resistance. Such drops can be related to root properties including diameter, stiffness and strength using simpleWinkler foundation models, thereby providing a field instrument for rapid quantification of root properties and distribution. While this approach has proved useful for measuring single widely-spaced roots, it has not previously been determined how the penetrometer response changes as a result of roots being in close proximity. Therefore in this study 1-g physical modelling (at 1:1 scale) was conducted to study the effect of vertical root spacing using horizontal, straight 3D-printed root analogues. Results showthatwhen roots are closely spaced, there is significant interaction between them, resulting in higher apparent root displacements to failure and an increased amount of energy being dissipated. This preliminary work shows that the interpretive models used to analyse the penetrometer trace require further development to account for root-soil-root interactions in densely rooted soil.</p

    Comparison of new <i>in situ </i>root-reinforcement measuring devices to existing techniques

    Get PDF
    Mechanical root-reinforcement is difficult to quantify. Existing in-situ methods are cumbersome, while modelling requires parameters which are difficult to acquire. In this paper, two new in-situ measurement devices are introduced ('cork screw' and 'pin vane') and their performance is compared to field vane and laboratory direct shear strength measurements in fallow and rooted soil. Both new methods show a close correlation with field vane readings in fallow soil. Tests in reinforced soil show that both new methods can be installed without significant root disturbance. The simplicity of both new methods allows for practical in-situ use and both can be used to study soil stress-strain behaviour, thus addressing some major limitations in existing methodologies for characterising rooted soil.</p

    Long-Term Potentiation: One Kind or Many?

    Get PDF
    Do neurobiologists aim to discover natural kinds? I address this question in this chapter via a critical analysis of classification practices operative across the 43-year history of research on long-term potentiation (LTP). I argue that this 43-year history supports the idea that the structure of scientific practice surrounding LTP research has remained an obstacle to the discovery of natural kinds

    Indistinguishable photons from a diode

    Full text link
    We generate indistinguishable photons from a semiconductor diode containing a InAs/GaAs quantum dot. Using an all-electrical technique to populate and control a single-photon emitting state we filter-out dephasing by Stark-shifting the emission energy on timescales below the dephasing time of the state. Mixing consecutive photons on a beam-splitter we observe two-photon interference with a visibility of 64%

    Post-selective two-photon interference from a continuous non-classical stream of photons emitted by a quantum dot

    Get PDF
    We report an electrically driven semiconductor single photon source capable of emitting photons with a coherence time of up to 400 ps under fixed bias. It is shown that increasing the injection current causes the coherence time to reduce and this effect is well explained by the fast modulation of a fluctuating environment. Hong-Ou-Mandel type two-photon interference using a Mach-Zehnder interferometer is demonstrated using this source to test the indistinguishability of individual photons by post-selecting events where two photons collide at a beamsplitter. Finally, we consider how improvements in our detection system can be used to achieve a higher interference visibility.Comment: 4 pages, 3 figures: for publication in Phys. Rev. Let

    Composite biomaterial repair strategy to restore biomechanical function and reduce herniation risk in an ex vivo large animal model of intervertebral disc herniation with varying injury severity

    Full text link
    Back pain commonly arises from intervertebral disc (IVD) damage including annulus fibrosus (AF) defects and nucleus pulposus (NP) loss. Poor IVD healing motivates developing tissue engineering repair strategies. This study evaluated a composite injectable IVD biomaterial repair strategy using carboxymethylcellulose-methylcellulose (CMC-MC) and genipincrosslinked fibrin (FibGen) that mimic NP and AF properties, respectively. Bovine ex vivo caudal IVDs were evaluated in cyclic compression-tension, torsion, and compression-to-failure tests to determine IVD biomechanical properties, height loss, and herniation risk following experimentally-induced severe herniation injury and discectomy (4 mm biopsy defect with 20% NP removed). FibGen with and without CMC-MC had failure strength similar to discectomy injury suggesting no increased risk compared to surgical procedures, yet no biomaterials improved axial or torsional biomechanical properties suggesting they were incapable of adequately restoring AF tension. FibGen had the largest failure strength and was further evaluated in additional discectomy injury models with varying AF defect types (2 mm biopsy, 4 mm cruciate, 4 mm biopsy) and NP removal volume (0%, 20%). All simulated discectomy defects significantly compromised failure strength and biomechanical properties. The 0% NP removal group had mean values of axial biomechanical properties closer to intact levels than defects with 20% NP removed but they were not statistically different and 0% NP removal also decreased failure strength. FibGen with and without CMC-MC failed at super-physiological stress levels above simulated discectomy suggesting repair with these tissue engineered biomaterials may perform better than discectomy alone, although restored biomechanical function may require additional healing with the potential application of these biomaterials as sealants and cell/drug delivery carriers

    Flow Equations for U_k and Z_k

    Get PDF
    By considering the gradient expansion for the wilsonian effective action S_k of a single component scalar field theory truncated to the first two terms, the potential U_k and the kinetic term Z_k, I show that the recent claim that different expansion of the fluctuation determinant give rise to different renormalization group equations for Z_k is incorrect. The correct procedure to derive this equation is presented and the set of coupled differential equations for U_k and Z_k is definitely established.Comment: 5 page
    corecore