389 research outputs found

    Virtual biopsy in abdominal pathology: where do we stand?

    Get PDF
    In recent years, researchers have explored new ways to obtain information from pathological tissues, also exploring non-invasive techniques, such as virtual biopsy (VB). VB can be defined as a test that provides promising outcomes compared to traditional biopsy by extracting quantitative information from radiological images not accessible through traditional visual inspection. Data are processed in such a way that they can be correlated with the patient’s phenotypic expression, or with molecular patterns and mutations, creating a bridge between traditional radiology, pathology, genomics, and artificial intelligence (AI). Radiomics is the backbone of VB, since it allows the extraction and selection of features from radiological images, feeding them into AI models in order to derive lesions' pathological characteristics and molecular status. Presently, the output of VB provides only a gross approximation of the findings of tissue biopsy. However, in the future, with the improvement of imaging resolution and processing techniques, VB could partially substitute the classical surgical or percutaneous biopsy, with the advantage of being non-invasive, comprehensive, accounting for lesion heterogeneity, and low cost. In this review, we investigate the concept of VB in abdominal pathology, focusing on its pipeline development and potential benefits

    Sviluppo di una micro CT con sorgente Quasi-Monocromatica Multi-Energy per lo studio in vivo della crescita e della metastasi tumorale

    Get PDF
    Un innovativo micro scanner CT per piccolo animali – basato su di una sorgente che genera una coppia di fasci X Quasi-Monocromatici paralleli con diverse energie selezionabili – è in corso di installazione e caratterizzazione al Dipartimento di Fisica dell’Università di Bologna. Lo scopo della ricerca è quello di effettuare l’imaging radiologico in vivo del tessuto tumorale e/o dei pattern di neo-angiogenesi in una fase diagnostica precoce realizzando la separazione del tessuto patologico da quello sano per mezzo della tecnica multi-energy che consiste nell’utilizzo di due o più fasci di raggi X quasi-monocromatici in sostituzione dell’unico fascio policromatico utilizzato nella radiologia convenzionale. Lo strumento consentirà inoltre lo studio, sui topi, della crescita tumorale e della formazione delle metastasi per differenti tipologie di tumore. Per la diagnosi precoce del tumore è essenziale essere in grado di rivelare i cambiamenti tissutali precancerosi, come la neo-angiogenesi. Si tratta di un meccanismo che si verifica in una fase iniziale dello sviluppo della patologia ed è dovuto alla produzione di molecole che stimolano la creazione di nuovi vasi sanguigni per alimentare la crescita delle cellule cancerose. Come dimostrato in precedenti studi di fattibilità [1], un sistema di imaging basato su due fasci di raggi X quasi-monocromatici di differenti energie fornisce maggiore sensibilità nella rivelazione di basse concentrazioni di mezzo di contrasto iodato rispetto ai tradizionali apparati RX con fascio policromatico. La K-edge dual energy radiology è una tecnologia potenzialmente in grado di rivelare il processo di neo-angiogenesi tumorale in uno stadio precoce quando la strumentazione convenzionale non dispone di sufficiente sensibilità. Inoltre, la possibilità di selezionare le energie dei fasci quasi-monocromatici consente l’applicazione della Multi-Energy Quasi-MonochromaticRadiology: selezionando opportunamente le energie è possibile esaltare le differenze fra i coefficienti di attenuazione lineare del tessuto patologico rispetto a quello sano aumentando il contrasto della patologia. Infatti, la tecnica multi-energy consente di ricostruire il numero atomico efficace e persino la composizione chimica del tessuto irradiato. Tuttavia, per ottenere questo risultato, si dovrebbero conoscere le bande di energia in cui l’assorbimento dei raggi X da parte del tessuto tumorale eventualmente differisce significativamente da quello dei tessuti sani. Per questo motivo è stata iniziata una sistematica caratterizzazione radiologica di molti tipi di tessuti sani e neoplastici, murini e umani allo scopo di costituire un catalogo delle finestre di energia in cui sarà possibile applicare la metodica multi-energy

    Interpersonal relationships in work of multiprofessional team of family health unit

    Get PDF
    Objective: To learn the interpersonal relationships established by the multidisciplinary team in a Family Health Unit. Method: It is a qualitative, descriptive and exploratory study in a basic health unit located in a large city in southern Rio Grande do Sul. Participants were seven professionals of the staff, whose data were collected through semi-structured interviews and then treated by thematic analysis. Results: Three themes emerged in which it was revealed the fragility of interpersonal relationships in the study unit. Thus, some strategic aspects were listed for the consolidation of healthy interpersonal relationships as the proposal of a dialogical work environment and availability of spaces for discussions and team meetings, reflecting the improvement of health care to the described population. Conclusion: This study evidences the relevance of giving emphasis on interpersonal relationships and subjectivities of professionals in the labor process

    Between the Mirror and the Oil Lamp: Promptings from a Teaching Case in Graduation Courses

    Get PDF
    This paper presents the results of a formative experience involving teacher trainers in a Master degree graduation course The course used a teaching case which is considered here a formative and investigative strategy The writing of this paper derives from the re-reading of a paper previously published by Rocha 2012 on the Ensino em Re-Vista UFU Journal v 19 The publication portraits the experience with teaching cases for a class of Advanced Seminar II in 2007 of the Master of Education Program at the Federal University of Mato Grosso Brazil - under the line of research Teacher education and school organization In general graduate courses in Brazil receive professionals from different knowledge areas even for graduate courses in education The Master degree program is an entrance door for academic paths especially when the profile of the teacher who will start teaching undergraduate or specialization courses is taken into consideration In these programs besides the professionals with specific interest in educational research there are also teacher trainers and in general higher education professor

    Virtual biopsy in prostate cancer: can machine learning distinguish low and high aggressive tumors on MRI?

    Get PDF
    In the last decades, MRI was proven a useful tool for the diagnosis and characterization of Prostate Cancer (PCa). In the literature, many studies focused on characterizing PCa aggressiveness, but a few have distinguished between low-aggressive (Gleason Grade Group (GG) =3) PCas based on biparametric MRI (bpMRI). In this study, 108 PCas were collected from two different centers and were divided into training, testing, and validation set. From Apparent Diffusion Coefficient (ADC) map and T2-Weighted Image (T2WI), we extracted texture features, both 3D and 2D, and we implemented three different methods of Feature Selection (FS): Minimum Redundance Maximum Relevance (MRMR), Affinity Propagation (AP), and Genetic Algorithm (GA). From the resulting subsets of predictors, we trained Support Vector Machine (SVM), Decision Tree, and Ensemble Learning classifiers on the training set, and we evaluated their prediction ability on the testing set. Then, for each FS method, we chose the best classifier, based on both training and testing performances, and we further assessed their generalization capability on the validation set. Between the three best models, a Decision Tree was trained using only two features extracted from the ADC map and selected by MRMR, achieving, on the validation set, an Area Under the ROC (AUC) equal to 81%, with sensitivity and specificity of 77% and 93%, respectively.Clinical Relevance- Our best model demonstrated to be able to distinguish low-aggressive from high-aggressive PCas with high accuracy. Potentially, this approach could help clinician to noninvasively distinguish between PCas that might need active treatment and those that could potentially benefit from active surveillance, avoiding biopsy-related complications

    Adhesion to and biofilm formation on IB3-1 bronchial cells by Stenotrophomonas maltophilia isolates from cystic fibrosis patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Stenotrophomonas maltophilia </it>has recently gained considerable attention as an important emerging pathogen in cystic fibrosis (CF) patients. However, the role of this microorganism in the pathophysiology of CF lung disease remains largely unexplored. In the present study for the first time we assessed the ability of <it>S. maltophilia </it>CF isolates to adhere to and form biofilm in experimental infection experiments using the CF-derived bronchial epithelial IB3-1cell line. The role of flagella on the adhesiveness of <it>S. maltophilia </it>to IB3-1 cell monolayers was also assessed by using <it>fliI </it>mutant derivative strains.</p> <p>Results</p> <p>All <it>S. maltophilia </it>CF isolates tested in the present study were able, although at different levels, to adhere to and form biofilm on IB3-1 cell monolayers. Scanning electron and confocal microscopy revealed <it>S. maltophilia </it>structures typical of biofilm formation on bronchial IB3-1 cells. The loss of flagella significantly (P < 0.001) decreased bacterial adhesiveness, if compared to that of their parental flagellated strains. <it>S. maltophilia </it>CF isolates were also able to invade IB3-1 cells, albeit at a very low level (internalization rate ranged from 0.01 to 4.94%). Pre-exposure of IB3-1 cells to <it>P. aeruginosa </it>PAO1 significantly increased <it>S. maltophilia </it>adhesiveness. Further, the presence of <it>S. maltophilia </it>negatively influenced <it>P. aeruginosa </it>PAO1 adhesiveness.</p> <p>Conclusions</p> <p>The main contribution of the present study is the finding that <it>S. maltophilia </it>is able to form biofilm on and invade CF-derived IB3-1 bronchial epithelial cells, thus posing a rationale for the persistence and the systemic spread of this opportunistic pathogen in CF patients. Experiments using <it>in vivo </it>models which more closely mimic CF pulmonary tissues will certainly be needed to validate the relevance of our results.</p

    Human Cardiac Progenitor Spheroids Exhibit Enhanced Engraftment Potential

    Get PDF
    A major obstacle to an effective myocardium stem cell therapy has always been the delivery and survival of implanted stem cells in the heart. Better engraftment can be achieved if cells are administered as cell aggregates, which maintain their extra-cellular matrix (ECM). We have generated spheroid aggregates in less than 24 h by seeding human cardiac progenitor cells (hCPCs) onto methylcellulose hydrogel-coated microwells. Cells within spheroids maintained the expression of stemness/mesenchymal and ECM markers, growth factors and their cognate receptors, cardiac commitment factors, and metalloproteases, as detected by immunofluorescence, q-RT-PCR and immunoarray, and expressed a higher, but regulated, telomerase activity. Compared to cells in monolayers, 3D spheroids secreted also bFGF and showed MMP2 activity. When spheroids were seeded on culture plates, the cells quickly migrated, displaying an increased wound healing ability with or without pharmacological modulation, and reached confluence at a higher rate than cells from conventional monolayers. When spheroids were injected in the heart wall of healthy mice, some cells migrated from the spheroids, engrafted, and remained detectable for at least 1 week after transplantation, while, when the same amount of cells was injected as suspension, no cells were detectable three days after injection. Cells from spheroids displayed the same engraftment capability when they were injected in cardiotoxin-injured myocardium. Our study shows that spherical in vivo ready-to-implant scaffold-less aggregates of hCPCs able to engraft also in the hostile environment of an injured myocardium can be produced with an economic, easy and fast protocol
    corecore