723 research outputs found

    BET inhibitors induce apoptosis through a MYC independent mechanism and synergise with CDK inhibitors to kill osteosarcoma cells

    Get PDF
    Osteosarcoma (OS) survival rates have plateaued in part due to a lack of new therapeutic options. Here we demonstrate that bromodomain inhibitors (BETi), JQ1, I-BET151, I-BET762, exert potent anti-tumour activity against primary and established OS cell lines, mediated by inhibition of BRD4. Strikingly, unlike previous observations in long-term established human OS cell lines, the antiproliferative activity of JQ1 in primary OS cells was driven by the induction of apoptosis, not cell cycle arrest. In further contrast, JQ1 activity in OS was mediated independently of MYC downregulation. We identified that JQ1 suppresses the transcription factor FOSL1 by displacement of BRD4 from its locus. Loss of FOSL1 phenocopied the antiproliferative effects of JQ1, identifying FOSL1 suppression as a potential novel therapeutic approach for OS. As a monotherapy JQ1 demonstrated significant anti-tumour activity in vivo in an OS graft model. Further, combinatorial treatment approaches showed that JQ1 increased the sensitivity of OS cells to doxorubicin and induced potent synergistic activity when rationally combined with CDK inhibitors. The greater level of activity achieved with the combination of BETi with CDK inhibitors demonstrates the efficacy of this combination therapy. Taken together, our studies show that BET inhibitors are a promising new therapeutic for OS

    TALPID3/KIAA0586 Regulates Multiple Aspects of Neuromuscular Patterning During Gastrointestinal Development in Animal Models and Human

    Get PDF
    TALPID3/KIAA0586 is an evolutionary conserved protein, which plays an essential role in protein trafficking. Its role during gastrointestinal (GI) and enteric nervous system (ENS) development has not been studied previously. Here, we analyzed chicken, mouse and human embryonic GI tissues with TALPID3 mutations. The GI tract of TALPID3 chicken embryos was shortened and malformed. Histologically, the gut smooth muscle was mispatterned and enteric neural crest cells were scattered throughout the gut wall. Analysis of the Hedgehog pathway and gut extracellular matrix provided causative reasons for these defects. Interestingly, chicken intra-species grafting experiments and a conditional knockout mouse model showed that ENS formation did not require TALPID3, but was dependent on correct environmental cues. Surprisingly, the lack of TALPID3 in enteric neural crest cells (ENCC) affected smooth muscle and epithelial development in a non-cell-autonomous manner. Analysis of human gut fetal tissues with a KIAA0586 mutation showed strikingly similar findings compared to the animal models demonstrating conservation of TALPID3 and its necessary role in human GI tract development and patterning

    RE: How the Coronavirus Disease-2019 May Improve Care: Rethinking Cervical Cancer Prevention

    Get PDF
    Feldman and Haas have written a timely piece on the potential to enhance cancer prevention and cancer care delivery in the COVID-19 era. Using cervical cancer prevention as a use case, the commentary describes clinical care provided via virtual platforms and in nontraditional settings, such as the patient’s home, as areas needing creative approaches to ensure care is provided safely and efficiently. As we consider factors that are relevant to delivering effective cancer prevention and cancer care post-COVID, we suggest that addressing social determinants of health, an often forgotten dimension of lived experience, should be prioritized as a strategy to enhance the equity of care provision. Social determinants of health, including food and housing insecurity have been shown to impact outcomes of patients with cancer, through a number of mechanisms including delays and incomplete care

    A national harmonised data collection network for neurodevelopmental disorders: A transdiagnostic assessment protocol for neurodevelopment, mental health, functioning and well-being

    Get PDF
    BACKGROUND: Children with neurodevelopmental disorders share common phenotypes, support needs and comorbidities. Such overlap suggests the value of transdiagnostic assessment pathways that contribute to knowledge about research and clinical needs of these children and their families. Despite this, large transdiagnostic data collection networks for neurodevelopmental disorders are not well developed. This paper describes the development of a nationally supported transdiagnostic clinical and research assessment protocol across Australia. The vision is to establish a harmonised network for data collection and collaboration that promotes transdiagnostic clinical practice and research. METHODS: Clinicians, researchers and community groups across Australia were consulted using surveys and national summits to identify assessment instruments and unmet needs. A national research committee was formed and, using a consensus approach, selected assessment instruments according to pre-determined criteria to form a harmonised transdiagnostic assessment protocol. RESULTS: Identified assessment instruments were clustered into domains of transdiagnostic assessment needs, which included child functioning/quality of life, child mental health, caregiver mental health, and family background information. From this, the research committee identified a core set of nine measures and an extended set of 14 measures that capture these domains with potential for further modifications as recommended by clinicians, researchers and community members. CONCLUSION: The protocol proposed here was established through a strong partnership between clinicians, researchers and the community. It will enable (i) consensus driven transdiagnostic clinical assessments for children with neurodevelopmental disorders, and (ii) research studies that will inform large transdiagnostic datasets across neurodevelopmental disorders and that can be used to inform research and policy beyond narrow diagnostic groups. The long-term vision is to use this framework to facilitate collaboration across clinics to enable large-scale data collection and research. Ultimately, the transdiagnostic assessment data can be used to inform practice and improve the lives of children with neurodevelopmental disorders and their families

    Home parenteral nutrition with an omega-3-fatty-acid-enriched MCT/LCT lipid emulsion in patients with chronic intestinal failure (the HOME study):study protocol for a randomized, controlled, multicenter, international clinical trial

    Get PDF
    BACKGROUND: Home parenteral nutrition (HPN) is a life-preserving therapy for patients with chronic intestinal failure (CIF) indicated for patients who cannot achieve their nutritional requirements by enteral intake. Intravenously administered lipid emulsions (ILEs) are an essential component of HPN, providing energy and essential fatty acids, but can become a risk factor for intestinal-failure-associated liver disease (IFALD). In HPN patients, major effort is taken in the prevention of IFALD. Novel ILEs containing a proportion of omega-3 polyunsaturated fatty acids (n-3 PUFA) could be of benefit, but the data on the use of n-3 PUFA in HPN patients are still limited. METHODS/DESIGN: The HOME study is a prospective, randomized, controlled, double-blind, multicenter, international clinical trial conducted in European hospitals that treat HPN patients. A total of 160 patients (80 per group) will be randomly assigned to receive the n-3 PUFA-enriched medium/long-chain triglyceride (MCT/LCT) ILE (Lipidem/Lipoplus® 200 mg/ml, B. Braun Melsungen AG) or the MCT/LCT ILE (Lipofundin® MCT/LCT/Medialipide® 20%, B. Braun Melsungen AG) for a projected period of 8 weeks. The primary endpoint is the combined change of liver function parameters (total bilirubin, aspartate transaminase and alanine transaminase) from baseline to final visit. Secondary objectives are the further evaluation of the safety and tolerability as well as the efficacy of the ILEs. DISCUSSION: Currently, there are only very few randomized controlled trials (RCTs) investigating the use of ILEs in HPN, and there are very few data at all on the use of n-3 PUFAs. The working hypothesis is that n-3 PUFA-enriched ILE is safe and well-tolerated especially with regard to liver function in patients requiring HPN. The expected outcome is to provide reliable data to support this thesis thanks to a considerable number of CIF patients, consequently to broaden the present evidence on the use of ILEs in HPN. TRIAL REGISTRATION: ClinicalTrials.gov, ID: NCT03282955. Registered on 14 September 2017

    LoCuSS: The Sunyaev-Zel'dovich Effect and Weak Lensing Mass Scaling Relation

    Get PDF
    We present the first weak-lensing-based scaling relation between galaxy cluster mass, M_wl, and integrated Compton parameter Y_sph. Observations of 18 galaxy clusters at z~0.2 were obtained with the Subaru 8.2-m telescope and the Sunyaev-Zel'dovich Array. The M_wl-Y_sph scaling relations, measured at Delta=500, 1000, and 2500 rho_c, are consistent in slope and normalization with previous results derived under the assumption of hydrostatic equilibrium (HSE). We find an intrinsic scatter in M_wl at fixed Y_sph of 20%, larger than both previous measurements of M_HSE-Y_sph scatter as well as the scatter in true mass at fixed Y_sph found in simulations. Moreover, the scatter in our lensing-based scaling relations is morphology dependent, with 30-40% larger M_wl for undisturbed compared to disturbed clusters at the same Y_sph at r_500. Further examination suggests that the segregation may be explained by the inability of our spherical lens models to faithfully describe the three-dimensional structure of the clusters, in particular, the structure along the line-of-sight. We find that the ellipticity of the brightest cluster galaxy, a proxy for halo orientation, correlates well with the offset in mass from the mean scaling relation, which supports this picture. This provides empirical evidence that line-of-sight projection effects are an important systematic uncertainty in lensing-based scaling relations.Comment: Accepted versio

    Effects of juvenile host density and food availability on adult immune response, parasite resistance and virulence in a Daphnia-parasite system

    Get PDF
    Host density can increase infection rates and reduce host fitness as increasing population density enhances the risk of becoming infected either through increased encounter rate or because host condition may decline. Conceivably, potential hosts could take high host density as a cue to up-regulate their defence systems. However, as host density usually covaries with food availability, it is difficult to examine the importance of host density in isolation. Thus, we performed two full-factorial experiments that varied juvenile densities of Daphnia magna (a freshwater crustacean) and food availability independently. We also included a simulated high-density treatment, where juvenile experimental animals were kept in filtered media that previously maintained Daphnia at high-density. Upon reaching adulthood, we exposed the Daphnia to their sterilizing bacterial parasite, Pasteuria ramosa, and examined how the juvenile treatments influenced the likelihood and severity of infection (Experiment I) and host immune investment (Experiment II). Neither juvenile density nor food treatments affected the likelihood of infection; however, well-fed hosts that were well-fed as juveniles produced more offspring prior to sterilization than their less well-fed counterparts. By contrast, parasite growth was independent of host juvenile resources or host density. Parasite-exposed hosts had a greater number of circulating haemocytes than controls (i.e., there was a cellular immune response), but the magnitude of immune response was not mediated by food availability or host density. These results suggest that density dependent effects on disease arise primarily through correlated changes in food availability: low food could limit parasitism and potentially curtail epidemics by reducing both the host's and parasite's reproduction as both depend on the same food

    Catching Element Formation In The Act

    Full text link
    Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.Comment: 14 pages including 3 figure

    Smoke, curtains and mirrors: the production of race through time and title registration

    Get PDF
    This article analyses the temporal effects of title registration and their relationship to race. It traces the move away from the retrospection of pre-registry common law conveyancing and toward the dynamic, future-oriented Torrens title registration system. The Torrens system, developed in early colonial Australia, enabled the production of ‘clean’, fresh titles that were independent of their predecessors. Through a process praised by legal commentators for ‘curing’ titles of their pasts, this system produces indefeasible titles behind its distinctive ‘curtain’ and ‘mirror’, which function similarly to magicians’ smoke and mirrors by blocking particular realities from view. In the case of title registries, those realities are particular histories of and relationships with land, which will not be protected by property law and are thus made precarious. Building on interdisciplinary work which theorises time as a social tool, I argue that Torrens title registration produces a temporal order which enables land market coordination by rendering some relationships with land temporary and making others indefeasible. This ordering of relationships with land in turn has consequences for the human subjects who have those relationships, cutting futures short for some and guaranteeing permanence to others. Engaging with Renisa Mawani and other critical race theorists, I argue that the categories produced by Torrens title registration systems materialise as race
    • …
    corecore