57 research outputs found

    Menopause leads to elevated expression of macrophage-associated genes in the aging frontal cortex: rat and human studies identify strikingly similar changes.

    Get PDF
    BACKGROUND The intricate interactions between the immune, endocrine and central nervous systems shape the innate immune response of the brain. We have previously shown that estradiol suppresses expression of immune genes in the frontal cortex of middle-aged ovariectomized rats, but not in young ones reflecting elevated expression of these genes in middle-aged, ovarian hormone deficient animals. Here, we explored the impact of menopause on the microglia phenotype capitalizing on the differential expression of macrophage-associated genes in quiescent and activated microglia. METHODS We selected twenty-three genes encoding phagocytic and recognition receptors expressed primarily in microglia, and eleven proinflammatory genes and followed their expression in the rat frontal cortex by real-time PCR. We used young, middle-aged and middle-aged ovariectomized rats to reveal age- and ovariectomy-related alterations. We analyzed the expression of the same set of genes in the postcentral and superior frontal gyrus of pre- and postmenopausal women using raw microarray data from our previous study. RESULTS Ovariectomy caused up-regulation of four classic microglia reactivity marker genes including Cd11b, Cd18, Cd45 and Cd86. The change was reversible since estradiol attenuated transcriptional activation of the four marker genes. Expression of genes encoding phagocytic and toll-like receptors such as Cd11b, Cd18, C3, Cd32, Msr2 and Tlr4 increased, whereas scavenger receptor Cd36 decreased following ovariectomy. Ovarian hormone deprivation altered the expression of major components of estrogen and neuronal inhibitory signaling which are involved in the control of microglia reactivity. Strikingly similar changes took place in the postcentral and superior frontal gyrus of postmenopausal women. CONCLUSIONS Based on the overlapping results of rat and human studies we propose that the microglia phenotype shifts from the resting toward the reactive state which can be characterized by up-regulation of CD11b, CD14, CD18, CD45, CD74, CD86, TLR4, down-regulation of CD36 and unchanged CD40 expression. As a result of this shift, microglial cells have lower threshold for subsequent activation in the forebrain of postmenopausal women

    Deficient liver biosynthesis of docosahexaenoic acid correlates with cognitive impairment in Alzheimer\u27s disease

    Get PDF
    Reduced brain levels of docosahexaenoic acid (C22:6n-3), a neurotrophic and neuroprotective fatty acid, may contribute to cognitive decline in Alzheimer\u27s disease. Here, we investigated whether the liver enzyme system that provides docosahexaenoic acid to the brain is dysfunctional in this disease. Docosahexaenoic acid levels were reduced in temporal cortex, mid-frontal cortex and cerebellum of subjects with Alzheimer\u27s disease, compared to control subjects (P = 0.007). Mini Mental State Examination (MMSE) scores positively correlated with docosahexaenoic/α-linolenic ratios in temporal cortex (P = 0.005) and mid-frontal cortex (P = 0.018), but not cerebellum. Similarly, liver docosahexaenoic acid content was lower in Alzheimer\u27s disease patients than control subjects (P = 0.011). Liver docosahexaenoic/α-linolenic ratios correlated positively with MMSE scores (r = 0.78; P\u3c0.0001), and negatively with global deterioration scale grades (P = 0.013). Docosahexaenoic acid precursors, including tetracosahexaenoic acid (C24:6n-3), were elevated in liver of Alzheimer\u27s disease patients (P = 0.041), whereas expression of peroxisomal d-bifunctional protein, which catalyzes the conversion of tetracosahexaenoic acid into docosahexaenoic acid, was reduced (P = 0.048). Other genes involved in docosahexaenoic acid metabolism were not affected. The results indicate that a deficit in d-bifunctional protein activity impairs docosahexaenoic acid biosynthesis in liver of Alzheimer\u27s disease patients, lessening the flux of this neuroprotective fatty acid to the brain

    Dietary and Behavioral Interventions Protect against Age Related Activation of Caspase Cascades in the Canine Brain

    Get PDF
    Lifestyle interventions such as diet, exercise, and cognitive training represent a quietly emerging revolution in the modern approach to counteracting age-related declines in brain health. Previous studies in our laboratory have shown that long-term dietary supplementation with antioxidants and mitochondrial cofactors (AOX) or behavioral enrichment with social, cognitive, and exercise components (ENR), can effectively improve cognitive performance and reduce brain pathology of aged canines, including oxidative damage and Aβ accumulation. In this study, we build on and extend our previous findings by investigating if the interventions reduce caspase activation and ceramide accumulation in the aged frontal cortex, since caspase activation and ceramide accumulation are common convergence points for oxidative damage and Aβ, among other factors associated with the aged and AD brain. Aged beagles were placed into one of four treatment groups: CON – control environment/control diet, AOX– control environment/antioxidant diet, ENR – enriched environment/control diet, AOX/ENR– enriched environment/antioxidant diet for 2.8 years. Following behavioral testing, brains were removed and frontal cortices were analyzed to monitor levels of active caspase 3, active caspase 9 and their respective cleavage products such as tau and semaphorin7a, and ceramides. Our results show that levels of activated caspase-3 were reduced by ENR and AOX interventions with the largest reduction occurring with combined AOX/ENR group. Further, reductions in caspase-3 correlated with reduced errors in a reversal learning task, which depends on frontal cortex function. In addition, animals treated with an AOX arm showed reduced numbers of cells expressing active caspase 9 or its cleavage product semaphorin 7A, while ENR (but not AOX) reduced ceramide levels. Overall, these data demonstrate that lifestyle interventions curtail activation of pro-degenerative pathways to improve cellular health and are the first to show that lifestyle interventions can regulate caspase pathways in a higher animal model of aging

    Deficient Liver Biosynthesis of Docosahexaenoic Acid Correlates with Cognitive Impairment in Alzheimer's Disease

    Get PDF
    Reduced brain levels of docosahexaenoic acid (C22:6n-3), a neurotrophic and neuroprotective fatty acid, may contribute to cognitive decline in Alzheimer's disease. Here, we investigated whether the liver enzyme system that provides docosahexaenoic acid to the brain is dysfunctional in this disease. Docosahexaenoic acid levels were reduced in temporal cortex, mid-frontal cortex and cerebellum of subjects with Alzheimer's disease, compared to control subjects (P = 0.007). Mini Mental State Examination (MMSE) scores positively correlated with docosahexaenoic/α-linolenic ratios in temporal cortex (P = 0.005) and mid-frontal cortex (P = 0.018), but not cerebellum. Similarly, liver docosahexaenoic acid content was lower in Alzheimer's disease patients than control subjects (P = 0.011). Liver docosahexaenoic/α-linolenic ratios correlated positively with MMSE scores (r = 0.78; P<0.0001), and negatively with global deterioration scale grades (P = 0.013). Docosahexaenoic acid precursors, including tetracosahexaenoic acid (C24:6n-3), were elevated in liver of Alzheimer's disease patients (P = 0.041), whereas expression of peroxisomal d-bifunctional protein, which catalyzes the conversion of tetracosahexaenoic acid into docosahexaenoic acid, was reduced (P = 0.048). Other genes involved in docosahexaenoic acid metabolism were not affected. The results indicate that a deficit in d-bifunctional protein activity impairs docosahexaenoic acid biosynthesis in liver of Alzheimer's disease patients, lessening the flux of this neuroprotective fatty acid to the brain

    Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study

    Get PDF
    BACKGROUND: This study undertakes a systematic and comprehensive analysis of brain gene expression profiles of immune/inflammation-related genes in aging and Alzheimer’s disease (AD). METHODS: In a well-powered microarray study of young (20 to 59 years), aged (60 to 99 years), and AD (74 to 95 years) cases, gene responses were assessed in the hippocampus, entorhinal cortex, superior frontal gyrus, and post-central gyrus. RESULTS: Several novel concepts emerge. First, immune/inflammation-related genes showed major changes in gene expression over the course of cognitively normal aging, with the extent of gene response far greater in aging than in AD. Of the 759 immune-related probesets interrogated on the microarray, approximately 40% were significantly altered in the SFG, PCG and HC with increasing age, with the majority upregulated (64 to 86%). In contrast, far fewer immune/inflammation genes were significantly changed in the transition to AD (approximately 6% of immune-related probesets), with gene responses primarily restricted to the SFG and HC. Second, relatively few significant changes in immune/inflammation genes were detected in the EC either in aging or AD, although many genes in the EC showed similar trends in responses as in the other brain regions. Third, immune/inflammation genes undergo gender-specific patterns of response in aging and AD, with the most pronounced differences emerging in aging. Finally, there was widespread upregulation of genes reflecting activation of microglia and perivascular macrophages in the aging brain, coupled with a downregulation of select factors (TOLLIP, fractalkine) that when present curtail microglial/macrophage activation. Notably, essentially all pathways of the innate immune system were upregulated in aging, including numerous complement components, genes involved in toll-like receptor signaling and inflammasome signaling, as well as genes coding for immunoglobulin (Fc) receptors and human leukocyte antigens I and II. CONCLUSIONS: Unexpectedly, the extent of innate immune gene upregulation in AD was modest relative to the robust response apparent in the aged brain, consistent with the emerging idea of a critical involvement of inflammation in the earliest stages, perhaps even in the preclinical stage, of AD. Ultimately, our data suggest that an important strategy to maintain cognitive health and resilience involves reducing chronic innate immune activation that should be initiated in late midlife

    Whistleblowing, Klinikdirektoren und Innovationsbedarf.

    Get PDF
    Jüngst haben mehrere Fälle von Whistleblowing in Spitälern für Aufsehen gesorgt. Ihre Häufung legt einen Blick auf systemische Zusammenhänge nahe. Wie alle Organisationen sind Spitäler Mischungen aus Formalität und Informalität. Dies erlaubt, «klug» mit Regeln, Weisungen und Vorgaben umzugehen und widersprüchliche Erwartungen in führungsfähige Formate zu übersetzen. Das Modell «Klinikdirektor» ist eine solche Mischung, die aber an Grenzen stösst. Organisatorische Innovation ist gefragt und mehr Mut erwünscht
    corecore