157 research outputs found

    The Effect of RNA Secondary Structures on RNA-Ligand Binding and the Modifier RNA Mechanism: A Quantitative Model

    Get PDF
    RNA-ligand binding often depends crucially on the local RNA secondary structure at the binding site. We develop here a model that quantitatively predicts the effect of RNA secondary structure on effective RNA-ligand binding activities based on equilibrium thermodynamics and the explicit computations of partition functions for the RNA structures. A statistical test for the impact of a particular structural feature on the binding affinities follows directly from this approach. The formalism is extended to describing the effects of hybridizing small \modifier RNAs' to a target RNA molecule outside its ligand binding site. We illustrate the applicability of our approach by quantitatively describing the interaction of the mRNA stabilizing protein HuR with AU-rich elements [Meisner et al. (2004), Chem. Biochem. in press]. We discuss our model and recent experimental findings demonstrating the ffectivity of modifier RNAs in vitro in the context of the current research activities in the field of non-coding RNAs. We speculate that modifier RNAs might also exist in nature; if so, they present an additional regulatory layer for fine-tuning gene expression that could evolve rapidly, leaving no obvious traces in the genomic DNA sequences

    Ectopic Prostate Tissue in the Uterine Cervix of a Female with Non-Classic Congenital Adrenal Hyperplasia-A Case Report

    Get PDF
    Introduction: The occurrence of ectopic prostate tissue in the female genital tract is rare and has only been described sporadically. The origin of these lesions is unclear, but their appearance seems to be associated with various forms of androgen excess, including androgen therapy for transgender treatment or disorders of sex development, such as classic congenital adrenal hyperplasia (CAH). This is the first described case of ectopic prostate tissue in the cervix uteri of a 46,XX patient with a confirmed diagnosis of non-classic CAH due to 21-OHD and a history of mild adrenal androgen excess. Case presentation: We describe a 34-year-old patient with a genetic diagnosis of non-classic CAH due to 21-hydroxylase deficiency (21-OHD) with a female karyo- and phenotype and a history of mild adrenal androgen excess. Due to dysplasia in the cervical smear, conization had to be performed, revealing ectopic prostate tissue in the cervix uteri of the patient. Conclusions: An association between androgen excess and the occurrence of prostate tissue is likely and should therefore be considered as a differential diagnosis for atypical tissue in the female genital tract

    Single Bead Labeling Method for Combining Confocal Fluorescence On-Bead Screening and Solution Validation of Tagged One-Bead One-Compound Libraries

    Get PDF
    SummaryScreening of one-bead one-compound libraries by incubating beads with fluorescently labeled target protein requires isolation and structure elucidation of a large number of primary hit beads. However, the potency of the identified ligands is only revealed after time consuming and expensive larger scale resynthesis and testing in solution. Often, many of the resynthesized compounds turn out to be weak target binders in solution due to large differences between surface and solution binding affinities. For an industry style high-throughput screening (HTS) process a high false positive rate is detrimental. We have therefore combined single bead and single molecule/single cell techniques into an integrated HTS process in which the picomole amount of substance contained on one isolated hit bead is sufficient for quality control, structure determination, and precise affinity determination to the target protein in solution

    Epigenetic regulation of gene expression in response to a changing environment in CHO cell batch culture

    Get PDF
    Chinese Hamster Ovary (CHO) cells have been the workhorse for industrial production of recombinant therapeutic proteins since 1987. Variations in cellular environment and phenotypes that occur throughout the bioprocess can bring about significant changes in productivity and quality of recombinant proteins. This can potentially lead to rejection of the production lot. Hence, there is interest in an in-depth understanding of cell-line behavior and control to achieve more predictable and reliable process performance. Biological systems undergo dynamic changes over time, where individual genes are turned “on”, “off” or “paused” as and when required. So far, there is very little information available for CHO cell lines, that elucidates the effect of dynamic epigenetic regulation on temporal expression of genes in response to altered substrate availability and culture conditions. While DNA methylation levels around TSS induce either expression or silencing of genes, transcriptional regulation is primarily considered to be an interplay of transcription factors and chromatin modifiers. On top of these, there is a rapid increase in indications that connects phase-specific long non-coding RNAs (lncRNAs) in transcriptional and post-transcriptional gene regulation. Unfortunately, the mechanism of interaction of these lncRNAs with coding genes have not been studied extensively. In this study, the gene transcription dynamics throughout a batch culture of CHO cells was examined by analyzing expression profiles and histone modifications in regular 12-24 hour intervals. Chromatin states and differential methylation profiles were used to understand the role of epigenetic modifiers in the regulation of gene expression. A good correlation between expression level and absence of DNA-methylation in the promoter regions was observed. Genes having all essential active chromatin marks - specific for promoter activity, genic enhancer and active transcription, also showed significantly high positive correlation between the changes in expression levels and histone marks. Both transcription and chromatin modifications during different growth phases were found to be highly dynamic. Clusters of genes showing similar trends of expression depict gradual and continuous adaptation to the changing substrate concentrations. Less narrowly spaced temporal analyses would have prevented detection of critical regulators involved in transient changes during the batch culture. Here, we also report a plausible mode of interaction of lncRNAs with the coding genes mediated by RNA-DNA-DNA triplex formations. Based on the identified interactions, we could predict possible gene targets and the target sites for the expressed lncRNAs and show high level of correlation of expression levels between interacting pairs. To the best of our knowledge this is the first and most comprehensive report of genome wide transcriptional regulation by epigenetic modifiers for CHO. Please click Additional Files below to see the full abstract

    Identification of a Small Molecule Inhibitor of Importin β Mediated Nuclear Import by Confocal On-Bead Screening of Tagged One-Bead One-Compound Libraries

    Get PDF
    In eukaryotic cells, proteins and RNAs are transported between the nucleus and the cytoplasm by nuclear import and export receptors. Over the past decade, small molecules that inhibit the nuclear export receptor CRM1 have been identified, most notably,leptomycin B. However, up to now no small molecule inhibitors of nuclear import have been described. Here we have used our automated confocal nanoscanning and bead picking method (CONA) for on-bead screening of a one-bead one-compound library to identify the first such import inhibitor, karyostatin 1A. Karyostatin 1A binds importin beta with high nanomolar affinity and specifically inhibits importin alpha/beta mediated nuclear import at low micromolar concentrations in vitro and in living cells, without perturbing transportin mediated nuclear import or CRM1 mediated nuclear export. Surface plasmon resonance binding-experiments suggest that karyostatin 1A acts by disrupting the interaction between importin p and the OPase Ran. As a selective inhibitor of the importin alpha/beta import pathway, karyostatin 1A will provide a valuable tool for future studies of nucleocytoplasmic trafficking.</p

    Absence of Adiponutrin (PNPLA3) and Monoacylglycerol Lipase Synergistically Increases Weight Gain and Aggravates Steatohepatitis in Mice

    Get PDF
    Altered lipid metabolic pathways including hydrolysis of triglycerides are key players in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Whether adiponutrin (patatin-like phospholipase domain containing protein-3-PNPLA3) and monoacylglycerol lipase (MGL) synergistically contribute to disease progression remains unclear. We generated double knockout (DKO) mice lacking both Mgl and Pnpla3; DKO mice were compared to Mgl-/- after a challenge by high-fat diet (HFD) for 12 weeks to induce steatosis. Serum biochemistry, liver transaminases as well as histology were analyzed. Fatty acid (FA) profiling was assessed in liver and adipose tissue by gas chromatography. Markers of inflammation and lipid metabolism were analyzed. Bone marrow derived macrophages (BMDMs) were isolated and treated with oleic acid. Combined deficiency of Mgl and Pnpla3 resulted in weight gain on a chow diet; when challenged by HFD, DKO mice showed increased hepatic FA synthesis and diminished beta-oxidation compared to Mgl-/-.DKO mice exhibited more pronounced hepatic steatosis with inflammation and recruitment of immune cells to the liver associated with accumulation of saturated FAs. Primary BMDMs isolated from the DKO mice showed increased inflammatory activities, which could be reversed by oleic acid supplementation. Pnpla3 deficiency aggravates the effects of Mgl deletion on steatosis and inflammation in the liver under HFD challenge

    The pulvinar nucleus and antidepressant treatment : dynamic modeling of antidepressant response and remission with ultra-high field functional MRI

    Get PDF
    Functional magnetic resonance imaging (fMRI) successfully disentangled neuronal pathophysiology of major depression (MD), but only a few fMRI studies have investigated correlates and predictors of remission. Moreover, most studies have used clinical outcome parameters from two time points, which do not optimally depict differential response times. Therefore, we aimed to detect neuronal correlates of response and remission in an antidepressant treatment study with 7 T fMRI, potentially harnessing advances in detection power and spatial specificity. Moreover, we modeled outcome parameters from multiple study visits during a 12-week antidepressant fMRI study in 26 acute (aMD) patients compared to 36 stable remitted (rMD) patients and 33 healthy control subjects (HC). During an electrical painful stimulation task, significantly higher baseline activity in aMD compared to HC and rMD in the medial thalamic nuclei of the pulvinar was detected (p = 0.004, FWE-corrected), which was reduced by treatment. Moreover, clinical response followed a sigmoid function with a plateau phase in the beginning, a rapid decline and a further plateau at treatment end. By modeling the dynamic speed of response with fMRI-data, perigenual anterior cingulate activity after treatment was significantly associated with antidepressant response (p < 0.001, FWE-corrected). Temporoparietal junction (TPJ) baseline activity significantly predicted non-remission after 2 antidepressant trials (p = 0.005, FWE-corrected). The results underline the importance of the medial thalamus, attention networks in MD and antidepressant treatment. Moreover, by using a sigmoid model, this study provides a novel method to analyze the dynamic nature of response and remission for future trials

    Major immunophenotypic abnormalities in patients with primary adrenal insufficiency of different etiology

    Get PDF
    INTRODUCTION Patients with primary adrenal insufficiency (PAI) suffer from increased risk of infection, adrenal crises and have a higher mortality rate. Such dismal outcomes have been inferred to immune cell dysregulation because of unphysiological cortisol replacement. As the immune landscape of patients with different types of PAI has not been systematically explored, we set out to immunophenotype PAI patients with different causes of glucocorticoid (GC) deficiency. METHODS This cross-sectional single center study includes 28 patients with congenital adrenal hyperplasia (CAH), 27 after bilateral adrenalectomy due to Cushing's syndrome (BADx), 21 with Addison's disease (AD) and 52 healthy controls. All patients with PAI were on a stable GC replacement regimen with a median dose of 25 mg hydrocortisone per day. Peripheral blood mononuclear cells were isolated from heparinized blood samples. Immune cell subsets were analyzed using multicolor flow cytometry after four-hour stimulation with phorbol myristate acetate and ionomycin. Natural killer (NK-) cell cytotoxicity and clock gene expression were investigated. RESULTS The percentage of T helper cell subsets was downregulated in AD patients (Th1 p = 0.0024, Th2 p = 0.0157, Th17 p < 0.0001) compared to controls. Cytotoxic T cell subsets were reduced in AD (Tc1 p = 0.0075, Tc2 p = 0.0154) and CAH patients (Tc1 p = 0.0055, Tc2 p = 0.0012) compared to controls. NKCC was reduced in all subsets of PAI patients, with smallest changes in CAH. Degranulation marker CD107a expression was upregulated in BADx and AD, not in CAH patients compared to controls (BADx p < 0.0001; AD p = 0.0002). In contrast to NK cell activating receptors, NK cell inhibiting receptor CD94 was upregulated in BADx and AD, but not in CAH patients (p < 0.0001). Although modulation in clock gene expression could be confirmed in our patient subgroups, major interindividual-intergroup dissimilarities were not detected. DISCUSSION In patients with different etiologies of PAI, distinct differences in T and NK cell-phenotypes became apparent despite the use of same GC preparation and dose. Our results highlight unsuspected differences in immune cell composition and function in PAI patients of different causes and suggest disease-specific alterations that might necessitate disease-specific treatment

    Monoacylglycerol Lipase Inhibition Protects From Liver Injury in Mouse Models of Sclerosing Cholangitis

    Get PDF
    Background and Aims Monoacylglycerol lipase (MGL) is the last enzymatic step in triglyceride degradation, hydrolyzing monoglycerides into glycerol and fatty acids (FAs) and converting 2-arachidonoylglycerol into arachidonic acid, thus providing ligands for nuclear receptors as key regulators of hepatic bile acid (BA)/lipid metabolism and inflammation. We aimed to explore the role of MGL in the development of cholestatic liver and bile duct injury in mouse models of sclerosing cholangitis, a disease so far lacking effective pharmacological therapy. Approach and Results To this aim we analyzed the effects of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) feeding to induce sclerosing cholangitis in wild-type (WT) and knockout (MGL(-/-)) mice and tested pharmacological inhibition with JZL184 in the multidrug resistance protein 2 knockout (Mdr2(-/-)) mouse model of sclerosing cholangitis. Cholestatic liver injury and fibrosis were assessed by serum biochemistry, liver histology, gene expression, and western blot characterization of BA and FA synthesis/transport. Moreover, intestinal FAs and fecal microbiome were analyzed. Transfection and silencing were performed in Caco2 cells. MGL(-/-) mice were protected from DDC-induced biliary fibrosis and inflammation with reduced serum liver enzymes and increased FA/BA metabolism and beta-oxidation. Notably, pharmacological (JZL184) inhibition of MGL ameliorated cholestatic injury in DDC-fed WT mice and protected Mdr2(-/-) mice from spontaneous liver injury, with improved liver enzymes, inflammation, and biliary fibrosis. In vitro experiments confirmed that silencing of MGL decreases prostaglandin E-2 accumulation in the intestine and up-regulates peroxisome proliferator-activated receptors alpha and gamma activity, thus reducing inflammation. Conclusions Collectively, our study unravels MGL as a metabolic target, demonstrating that MGL inhibition may be considered as potential therapy for sclerosing cholangitis

    A single, episodic event of unilateral/bilateral scrotal swelling in a group of adult boars at an Austrian boar stud

    Get PDF
    Background Scrotal swelling is a clinical situation which can be caused by different aetiologies. In this case report, we describe a multi-week episode of unilateral and bilateral scrotal swelling in boars at an Austrian boar stud and its diagnostic work-up. Case presentation In the summer of 2020, the herd veterinarian of an Austrian boar stud reported that over a period of six weeks, five out of 70 boars presented with unilateral severe swelling of the left scrotum and three out of 70 boars with bilateral severe swelling of the left and moderate swelling of the right scrotum, respectively. A complete history was obtained and an on-site evaluation of the facility was done. Five boars were necropsied, and a variety of samples harvested for further diagnostic investigations. Infectious differential diagnoses associated with unilateral swelling of the scrotum or the testis were excluded through serological and tissue testing. In three of the five boars, histopathology revealed complete acute haemorrhagic necrosis of the left testis concurrent with strongly congested blood vessels. Review of the collected information with a group of experts in the field of boar stud management resulted with consensus that, most likely, trauma was the etiologic event causing the clinical signs and pathology. Coincident with discussion of implementing video recording cameras in the boar housing area, no further clinical cases followed. As this case occurred during the first lockdown of the COVID-19 pandemic, we propose that the distress and travelling restrictions may have contributed to frustration among boar stud workers, which was consequently expressed as misbehaviour against boars. Conclusions Once all known infectious causes of unilateral swelling of the scrotum were excluded, a critical diagnostic work-up focused on non-infectious causes. Non-infectious causes, such as trauma, need to be carefully evaluated, as it may also include human misbehaviour against boars. Summarizing all findings of this case report, the authors hypothesize that a blunt trauma was the reason for the series of mainly unilateral swelling of the scrota of boars.info:eu-repo/semantics/publishedVersio
    corecore