110 research outputs found

    Modélisation du mouvement des chevreuils dans un paysage bocager simulé : premiers résultats, projets

    Get PDF
    Les tiques, dont Ixodes ricinus, espèce la plus répandue en Europe, sont vecteurs de nombreux agents pathogènes, protozoaires, bactéries ou virus, qui peuvent être responsables de maladies touchant l’Homme (Borreliose de Lyme) ou l’animal(babésiose bovine). En vue d’identifier les zones à risque vis-à-vis de ces maladies, il est important de connaître la distribution spatiale des tiques. Cette distribution dépend d’une part des conditions locales de température et d’humidité, d’autre part des mouvements des hôtes des tiques(Estrada-Peña, 2002). Les chevreuils sont notamment reconnus pour influencer fortement la densité de tiques(Ruiz-Fons et Gilbert 2010) et se déplacer sur de longues distances. Dans le cadre de l’estimation spatiale des risques, il est nécessaire de disposer d’un modèle de déplacement des hôtes en fonction des caractéristiques du paysage, dont le développement n’a pas été réalisé à ce jour. Dans un premier temps, une approche théorique a été privilégiée. Un modèle du paysage a été développé via une tesselation de Voronoï et un processus de marquage. Au sein de ce paysage modélisé, le mouvement du chevreuil est modélisé par des équations différentielles stochastiques. Ce mouvement se décompose donc en deux termes : un de dérive, qui dépend d’une fonction de potentiel reliée aux différents habitats qui composent le paysage, et un terme de diffusion. A partir d’une première fonction potentielle, il est donc possible de simuler le déplacement d’un individu dans un paysage modélisé. Les développements actuels visent dans un premier temps à tester différentes fonctions de potentiel en fonction de nos connaissances sur le comportement du chevreuil. L’étape suivante consistera à développer des méthodes d’inférence afin d’estimer les paramètres à partir de données simulées ou observées. Par la suite le prototype obtenu pourra être utilisé pour tester l’influence des caractéristiques du paysage sur le mouvement des chevreuils. Enfin, un couplage avec un modèle de dynamique de population de tiques (Hoch et al, 2010) fournira des aires de répartition simulées des vecteurs

    Cold Shock and Cold Acclimation Proteins in the Psychrotrophic Bacterium Arthrobacter globiformis SI55

    Get PDF
    The psychrotrophic bacterium Arthrobacter globiformis SI55 was grown at 4 and 25 degrees C, and the cell protein contents were analyzed by two-dimensional electrophoresis. Cells subjected to cold shocks of increasing magnitude were also analyzed. Correspondence analysis of protein appearance distinguished four groups of physiological significance. Group I contained cold shock proteins (Csps) overexpressed only after a large temperature downshift. Group II contained Csps with optimal expression after mild shocks. Group III contained proteins overexpressed after all cold shocks. These last proteins were also overexpressed in cells growing at 4 degrees C and were considered to be early cold acclimation proteins (Caps). Group IV contained proteins which were present at high concentrations only in 4 degrees C steady-state cells and appeared to be late Caps. A portion of a gene very similar to the Escherichia coli cspA gene (encoding protein CS7.4) was identified. A synthetic peptide was used to produce an antibody which detected a CS7.4-like protein (A9) by immunoblotting two-dimensional electrophoresis gels of A. globiformis SI55 total proteins. Unlike mesophilic microorganisms, this CS7.4-like protein was still produced during prolonged growth at low temperature, and it might have a particular adaptive function needed for balanced growth under harsh conditions. However, A9 was induced at high temperature by chloramphenicol, suggesting that CS7.4-like proteins have a more general role than their sole implication in cold acclimation processes

    Same habitat types but different use: evidence of context-dependent habitat selection in roe deer across populations

    Get PDF
    International audienceWith the surge of GPS-technology, many studies uncovered space use of mobile animals and shed light on the underlying behavioral mechanisms of habitat selection. Habitat selection and variation in either occurrence or strength of functional responses (i.e. how selection changes with availability) have given new insight into such mechanisms within populations in different ecosystems. However, linking variation in habitat selection to site-specific conditions in different populations facing contrasting environmental conditions but the same habitat type has not yet been investigated. We aimed to fill this knowledge gap by comparing within-home range habitat selection across 61 female roe deer (Capreolus capreolus) during the most critical life history stage in three study areas showing the same habitat types but with different environmental conditions. Female roe deer markedly differed in habitat selection within their home range, both within and among populations. Females facing poor environmental conditions clearly displayed a functional response, whereas females facing rich environmental conditions did not show any functional response. These results demonstrate how the use of a given habitat relative to its availability strongly varies in response to environmental conditions. Our findings highlight that the same habitat composition can lead to very different habitat selection processes across contrasted environments

    Back and forth: day–night alternation between cover types reveals complementary use of habitats in a large herbivore

    Get PDF
    Context The Complementary Habitat Hypothesis posits that animals access resources for different needs by moving between complementary habitats that can be seen as ‘resource composites’. These movements can occur over a range of temporal scales, from diurnal to seasonal, in response to multiple drivers such as access to food, weather constraints, risk avoidance and human disturbance. Within this framework, we hypothesised that large herbivores cope with human-altered landscapes through the alternate use of complementary habitats at both daily and seasonal scales. Objectives We tested the Complementary Habitat Hypothesis in European roe deer (Capreolus capreolus) by classifying 3900 habitat-annotated movement trajectories of 154 GPS-monitored individuals across contrasting landscapes. Methods We considered day-night alternation between open food-rich and closed refuge habitats as a measure of complementary habitat use. We first identified day–night alternation using the Individual Movement - Sequence Analysis Method, then we modelled the proportion of day–night alternation over the year in relation to population and individual characteristics. Results We found that day-night alternation is a widespread behaviour in roe deer, even across markedly different landscapes. Day–night alternation followed seasonal trends in all populations, partly linked to vegetation phenology. Within populations, seasonal patterns of open/closed habitat alternation differed between male and female adults, but not in juveniles. Conclusion Our results support the Complementary Habitat Hypothesis by showing that roe deer adjust their access to the varied resources available in complex landscapes by including different habitats within their home range, and sequentially alternating between them in response to seasonal changes and individual life history.publishedVersio

    Back and forth: day–night alternation between cover types reveals complementary use of habitats in a large herbivore

    Get PDF
    Context The Complementary Habitat Hypothesis posits that animals access resources for different needs by moving between complementary habitats that can be seen as ‘resource composites’. These movements can occur over a range of temporal scales, from diurnal to seasonal, in response to multiple drivers such as access to food, weather constraints, risk avoidance and human disturbance. Within this framework, we hypothesised that large herbivores cope with human-altered landscapes through the alternate use of complementary habitats at both daily and seasonal scales. Objectives We tested the Complementary Habitat Hypothesis in European roe deer (Capreolus capreolus) by classifying 3900 habitat-annotated movement trajectories of 154 GPS-monitored individuals across contrasting landscapes. Methods We considered day-night alternation between open food-rich and closed refuge habitats as a measure of complementary habitat use. We first identified day–night alternation using the Individual Movement - Sequence Analysis Method, then we modelled the proportion of day–night alternation over the year in relation to population and individual characteristics. Results We found that day-night alternation is a widespread behaviour in roe deer, even across markedly different landscapes. Day–night alternation followed seasonal trends in all populations, partly linked to vegetation phenology. Within populations, seasonal patterns of open/closed habitat alternation differed between male and female adults, but not in juveniles. Conclusion Our results support the Complementary Habitat Hypothesis by showing that roe deer adjust their access to the varied resources available in complex landscapes by including different habitats within their home range, and sequentially alternating between them in response to seasonal changes and individual life history

    Settle down! Ranging behaviour responses of roe deer to different capture and release methods

    Get PDF
    16openInternationalInternational coauthor/editorThe fitting of tracking devices to wild animals requires capture and handling which causes stress and can potentially cause injury, behavioural modifications that can affect animal welfare and the output of research. We evaluated post capture and release ranging behaviour responses of roe deer (Capreolus capreolus) for five different capture methods. We analysed the distance from the centre of gravity and between successive locations, using data from 14 different study sites within the EURODEER collaborative project. Independently of the capture method, we observed a shorter distance between successive locations and contextual shift away from the home range centre of gravity after the capture and release event. However, individuals converged towards the average behaviour within a relatively short space of time (between 10 days and one month). If researchers investigate questions based on the distance between successive locations of the home range, we recommend (1) initial investigation to establish when the animals start to behave normally again or (2) not using the first two to three weeks of data for their analysis. We also encourage researchers to continually adapt methods to minimize stress and prioritize animal welfare wherever possible, according to the Refinement of the Three R’sopenBergvall, Ulrika A; Morellet, Nicolas; Kjellander, Petter; Rauset, Geir R; Groeve, Johannes De; Borowik, Tomasz; Brieger, Falko; Gehr, Benedikt; Heurich, Marco; Hewison, A J Mark; Kröschel, Max; Pellerin, Maryline; Saïd, Sonia; Soennichsen, Leif; Sunde, Peter; Cagnacci, FrancescaBergvall, U.A.; Morellet, N.; Kjellander, P.; Rauset, G.R.; Groeve, J.D.; Borowik, T.; Brieger, F.; Gehr, B.; Heurich, M.; Hewison, A.J.M.; Kröschel, M.; Pellerin, M.; Saïd, S.; Soennichsen, L.; Sunde, P.; Cagnacci, F

    Settle Down! Ranging Behaviour Responses of Roe Deer to Different Capture and Release Methods

    Get PDF
    Simple Summary The study of animal movement in wild, free ranging species is fundamental for advancing knowledge on ecosystem relationships and for conservation. The deployment of bio-logging devices to this purpose (often GPS-collars in large mammals) requires relatively invasive procedures, such as capture, handling and release. Capture and manipulation cause behavioural modifications that are largely understudied in wild species and may affect both the welfare of animals and the output of the studies. We evaluated post capture and release ranging behaviour responses of a small deer species (roe deer Capreolus capreolus) for five different capture methods across 14 study sites within the EURODEER collaborative project. Roe deer showed modifications in their movement behaviour, independently of the capture method. However, individuals recovered rapidly, converging towards the average behaviour within a relatively short interval of time (between 10 days and one month), demonstrating a general resilience to such stressful events. We encourage researchers to continually adapt capture and handling methods so as to minimize stress and prioritize animal welfare. The fitting of tracking devices to wild animals requires capture and handling which causes stress and can potentially cause injury, behavioural modifications that can affect animal welfare and the output of research. We evaluated post capture and release ranging behaviour responses of roe deer (Capreolus capreolus) for five different capture methods. We analysed the distance from the centre of gravity and between successive locations, using data from 14 different study sites within the EURODEER collaborative project. Independently of the capture method, we observed a shorter distance between successive locations and contextual shift away from the home range centre of gravity after the capture and release event. However, individuals converged towards the average behaviour within a relatively short space of time (between 10 days and one month). If researchers investigate questions based on the distance between successive locations of the home range, we recommend (1) initial investigation to establish when the animals start to behave normally again or (2) not using the first two to three weeks of data for their analysis. We also encourage researchers to continually adapt methods to minimize stress and prioritize animal welfare wherever possible, according to the Refinement of the Three R's

    Large herbivore migration plasticity along environmental gradients in Europe: life-history traits modulate forage effects

    Get PDF
    The most common framework under which ungulate migration is studied predicts that it is driven by spatio–temporal variation in plant phenology, yet other hypotheses may explain differences within and between species. To disentangle more complex patterns than those based on single species/ single populations, we quantified migration vari-ability using two sympatric ungulate species differing in their foraging strategy, mating system and physiological constraints due to body size. We related observed variation to a set of hypotheses. We used GPS-collar data from 537 individuals in 10 roe Capreolus capreolus and 12 red deer Cervus elaphus populations spanning environmental gra-dients across Europe to assess variation in migration propensity, distance and tim-ing. Using time-to-event models, we explored how the probability of migration varied in relation to sex, landscape (e.g. topography, forest cover) and temporally-varying environmental factors (e.g. plant green-up, snow cover). Migration propensity varied across study areas. Red deer were, on average, three times more migratory than roe deer (56% versus 18%). This relationship was mainly driven by red deer males which were twice as migratory as females (82% versus 38%). The probability of roe deer migration was similar between sexes. Roe deer (both sexes) migrated earliest in spring. While territorial male roe deer migrated last in autumn, male and female red deer migrated around the same time in autumn, likely due to their polygynous mating system. Plant productivity determined the onset of spring migration in both species, but if plant productivity on winter ranges was sufficiently high, roe deer were less likely to leave. In autumn, migration coincided with reduced plant productivity for both species. This relationship was stronger for red deer. Our results confirm that ungulate migration is influenced by plant phenology, but in a novel way, that these effects appear to be modulated by species-specific traits, especially mating strategies.publishedVersio

    Wherever I may roam-Human activity alters movements of red deer (Cervus elaphus) and elk (Cervus canadensis) across two continents

    Get PDF
    Human activity and associated landscape modifications alter the movements of animals with consequences for populations and ecosystems worldwide. Species performing long-distance movements are thought to be particularly sensitive to human impact. Despite the increasing anthropogenic pressure, it remains challenging to understand and predict animals' responses to human activity. Here we address this knowledge gap using 1206 Global Positioning System movement trajectories of 815 individuals from 14 red deer (Cervus elaphus) and 14 elk (Cervus canadensis) populations spanning wide environmental gradients, namely the latitudinal range from the Alps to Scandinavia in Europe, and the Greater Yellowstone Ecosystem in North America. We measured individual-level movements relative to the environmental context, or movement expression, using the standardized metric Intensity of Use, reflecting both the directionality and extent of movements. We expected movement expression to be affected by resource (Normalized Difference Vegetation Index, NDVI) predictability and topography, but those factors to be superseded by human impact. Red deer and elk movement expression varied along a continuum, from highly segmented trajectories over relatively small areas (high intensity of use), to directed transitions through restricted corridors (low intensity of use). Human activity (Human Footprint Index, HFI) was the strongest driver of movement expression, with a steep increase in Intensity of Use as HFI increased, but only until a threshold was reached. After exceeding this level of impact, the Intensity of Use remained unchanged. These results indicate the overall sensitivity of Cervus movement expression to human activity and suggest a limitation of plastic responses under high human pressure, despite the species also occurring in human-dominated landscapes. Our work represents the first comparison of metric-based movement expression across widely distributed populations of a deer genus, contributing to the understanding and prediction of animals' responses to human activit
    • …
    corecore