26 research outputs found

    Prediction of key milk biomarkers in dairy cows through milk MIR spectra and international collaborations.

    Full text link
    peer reviewedAt the individual cow level, sub-optimum fertility, mastitis, negative energy balance and ketosis are major issues in dairy farming. These problems are widespread on dairy farms and have an important economic impact. The objectives of this study were: 1) to assess the potential of milk Mid Infrared (MIR) spectra to predict key biomarkers of energy deficit (citrate, isocitrate, glucose-6P, free glucose), ketosis (BHB and acetone), mastitis (NAGase and LDH), and fertility (progesterone); 2) to test alternative methodologies to partial least square regression (PLS) to better account for the specific asymmetric distribution of the biomarkers; and 3) to create robust models by merging large data sets from 5 international or national projects. Benefiting from this international collaboration, the data set comprised a total of 9,143 milk samples from 3,758 cows located in 589 herds across 10 countries and represented 7 breeds. The samples were analyzed by reference chemistry for biomarker contents while the MIR analyses were performed on 30 instruments from different models and brands, with spectra harmonized into a common format. Four quantitative methodologies were evaluated to address the strongly skewed distribution of some biomarkers. PLS was used as the reference basis, and compared with a random modification of distribution associated with PLS (Random-downsampling-PLS), an optimized modification of distribution associated with PLS (KennardStone-downsampling-PLS) and Support Vector Machine (SVM). When the ability of MIR to predict biomarkers was too low for quantification, different qualitative methodologies were tested to discriminate low vs high values of biomarkers. For each biomarker, 20% of the herds were randomly removed within all countries to be used as the validation data set. The remaining 80% of herds were used as the calibration data set. In calibration, the 3 alternative methodologies outperform the PLS performances for the majority of biomarkers. However, in the external herd validation, PLS provided the best results for isocitrate, glucose-6P, free glucose and LDH (R2v = 0.48, 0.58, 0.28, and 0.24). For other molecules, PLS-Random-downsampling and PLS-KennardStone-downsampling outperformed PLS in the majority of cases, but the best results were provided by SVM for citrate, BHB, acetone, NAGase and progesterone (R2v = 0.94, 0.58, 0.76, 0.68, and 0.15). Hence, PLS and SVM based on the entire data set provided the best results for normal and skewed distributions, respectively. Complementary to the quantitative methods, the qualitative discriminant models enabled the discrimination of high and low values for BHB, acetone, and NAGase with a global accuracy around 90%, and glucose-6P with an accuracy of 83%. In conclusion, MIR spectra of milk can enable quantitative screening of citrate as a biomarker of energy deficit and discrimination of low and high values of BHB, acetone, and NAGase, as biomarkers of ketosis and mastitis. Finally, progesterone could not be predicted with sufficient accuracy from milk MIR spectra to be further considered. Consequently, MIR spectrometry can bring valuable information regarding the occurrence of energy deficit, ketosis and mastitis in dairy cows, which in turn have major influences on their fertility and survival

    Cathepsin K Null Mice Show Reduced Adiposity during the Rapid Accumulation of Fat Stores

    Get PDF
    Growing evidences indicate that proteases are implicated in adipogenesis and in the onset of obesity. We previously reported that the cysteine protease cathepsin K (ctsk) is overexpressed in the white adipose tissue (WAT) of obese individuals. We herein characterized the WAT and the metabolic phenotype of ctsk deficient animals (ctsk−/−). When the growth rate of ctsk−/− was compared to that of the wild type animals (WT), we could establish a time window (5–8 weeks of age) within which ctsk−/−display significantly lower body weight and WAT size as compared to WT. Such a difference was not observable in older mice. Upon treatment with high fat diet (HFD) for 12 weeks ctsk−/− gained significantly less weight than WT and showed reduced brown adipose tissue, liver mass and a lower percentage of body fat. Plasma triglycerides, cholesterol and leptin were significantly lower in HFD-fed-ctsk−/− as compared to HFD-fed WT animals. Adipocyte lipolysis rates were increased in both young and HFD-fed-ctsk−/−, as compared to WT. Carnitine palmitoyl transferase-1 activity, was higher in mitochondria isolated from the WAT of HFD treated ctsk−/− as compared to WT. Together, these data indicate that ctsk ablation in mice results in reduced body fat content under conditions requiring a rapid accumulation of fat stores. This observation could be partly explained by an increased release and/or utilization of FFA and by an augmented ratio of lipolysis/lipogenesis. These results also demonstrate that under a HFD, ctsk deficiency confers a partial resistance to the development of dyslipidemia
    corecore