24 research outputs found

    Immuno-transcriptomic profiling of extracranial pediatric solid malignancies.

    Get PDF
    We perform an immunogenomics analysis utilizing whole-transcriptome sequencing of 657 pediatric extracranial solid cancer samples representing 14 diagnoses, and additionally utilize transcriptomes of 131 pediatric cancer cell lines and 147 normal tissue samples for comparison. We describe patterns of infiltrating immune cells, T cell receptor (TCR) clonal expansion, and translationally relevant immune checkpoints. We find that tumor-infiltrating lymphocytes and TCR counts vary widely across cancer types and within each diagnosis, and notably are significantly predictive of survival in osteosarcoma patients. We identify potential cancer-specific immunotherapeutic targets for adoptive cell therapies including cell-surface proteins, tumor germline antigens, and lineage-specific transcription factors. Using an orthogonal immunopeptidomics approach, we find several potential immunotherapeutic targets in osteosarcoma and Ewing sarcoma and validated PRAME as a bona fide multi-pediatric cancer target. Importantly, this work provides a critical framework for immune targeting of extracranial solid tumors using parallel immuno-transcriptomic and -peptidomic approaches

    Replication and active partition of integrative and conjugative elements (ICEs) of the SXT/R391 family : the line between ICEs and conjugative plasmids is getting thinner

    Get PDF
    Integrative and Conjugative Elements (ICEs) of the SXT/R391 family disseminate multidrug resistance among pathogenic Gammaproteobacteria such as Vibrio cholerae. SXT/R391 ICEs are mobile genetic elements that reside in the chromosome of their host and eventually self-transfer to other bacteria by conjugation. Conjugative transfer of SXT/R391 ICEs involves a transient extrachromosomal circular plasmid-like form that is thought to be the substrate for single-stranded DNA translocation to the recipient cell through the mating pore. This plasmid-like form is thought to be non-replicative and is consequently expected to be highly unstable. We report here that the ICE R391 of Providencia rettgeri is impervious to loss upon cell division. We have investigated the genetic determinants contributing to R391 stability. First, we found that a hipAB-like toxin/antitoxin system improves R391 stability as its deletion resulted in a tenfold increase of R391 loss. Because hipAB is not a conserved feature of SXT/R391 ICEs, we sought for alternative and conserved stabilization mechanisms. We found that conjugation itself does not stabilize R391 as deletion of traG, which abolishes conjugative transfer, did not influence the frequency of loss. However, deletion of either the relaxase-encoding gene traI or the origin of transfer (oriT) led to a dramatic increase of R391 loss correlated with a copy number decrease of its plasmid-like form. This observation suggests that replication initiated at oriT by TraI is essential not only for conjugative transfer but also for stabilization of SXT/R391 ICEs. Finally, we uncovered srpMRC, a conserved locus coding for two proteins distantly related to the type II (actin-type ATPase) parMRC partitioning system of plasmid R1. R391 and plasmid stabilization assays demonstrate that srpMRC is active and contributes to reducing R391 loss. While partitioning systems usually stabilizes low-copy plasmids, srpMRC is the first to be reported that stabilizes a family of ICEs

    Predictors of Recurrence and Patterns of Initial Failure in Localized Ewing Sarcoma: A Contemporary 20-Year Experience

    No full text
    Background. The majority of patients with localized Ewing sarcoma will remain disease-free long term, but for those who suffer recurrence, successful treatment remains a challenge. Identification of clinicopathologic factors predictive of recurrence could suggest areas for treatment optimization. We sought to describe our experience regarding predictors of recurrence and patterns of first failure in patients receiving modern systemic therapy for nonmetastatic Ewing sarcoma. Methods. The medical records of pediatric and adult patients treated for localized Ewing sarcoma between 1999 and 2019 at Johns Hopkins Hospital were retrospectively analyzed. Local control was surgery, radiotherapy, or both. Recurrence-free survival (RFS) was calculated using the Kaplan–Meier method. Univariable and multivariable Cox proportional-hazards modeling was performed to obtain hazard ratios (HR) for recurrence. Results. In 94 patients with initially localized disease, there were 21 recurrences: 4 local, 14 distant, and 3 combined. 5-year and 10-year RFS were 75.6% and 70.5%, respectively. On multivariable analysis including age at diagnosis and tumor size, <95% tumor necrosis following neoadjuvant chemotherapy (NAC; HR 14.3, p = 0.028) and radiological tumor size change during NAC (HR 1.04 per 1% decrease in size change, p = 0.032) were independent predictors of recurrence. Among patients experiencing distant recurrence, pulmonary metastases were present in 82% and were the only identifiable site of disease in 53%. Conclusions. Poor pathologic or radiologic response to NAC is predictive of recurrence in patients with localized Ewing sarcoma. Suboptimal tumor size reduction following chemotherapy provides a means to risk-stratify patients who do not undergo definitive resection. Isolated pulmonary recurrence was a common event

    Complex/cryptic <i>EWSR1::FLI1/ERG</i> Gene Fusions and 1q Jumping Translocation in Pediatric Ewing Sarcomas

    No full text
    Ewing sarcomas (ES) are rare small round cell sarcomas often affecting children and characterized by gene fusions involving one member of the FET family of genes (usually EWSR1) and a member of the ETS family of transcription factors (usually FLI1 or ERG). The detection of EWSR1 rearrangements has important diagnostic value. Here, we conducted a retrospective review of 218 consecutive pediatric ES at diagnosis and found eight patients having data from chromosome analysis, FISH/microarray, and gene-fusion assay. Three of these eight ES had novel complex/cryptic EWSR1 rearrangements/fusions by chromosome analysis. One case had a t(9;11;22)(q22;q24;q12) three-way translocation involving EWSR1::FLI1 fusion and 1q jumping translocation. Two cases had cryptic EWSR1 rearrangements/fusions, including one case with a cryptic t(4;11;22)(q35;q24;q12) three-way translocation involving EWSR1::FLI1 fusion, and the other had a cryptic EWSR1::ERG rearrangement/fusion on an abnormal chromosome 22. All patients in this study had various aneuploidies with a gain of chromosome 8 (75%), the most common, followed by a gain of chromosomes 20 (50%) and 4 (37.5%), respectively. Recognition of complex and/or cryptic EWSR1 gene rearrangements/fusions and other chromosome abnormalities (such as jumping translocation and aneuploidies) using a combination of various genetic methods is important for accurate diagnosis, prognosis, and treatment outcomes of pediatric ES

    The Immunosuppressive Niche of Soft-Tissue Sarcomas is Sustained by Tumor-Associated Macrophages and Characterized by Intratumoral Tertiary Lymphoid Structures

    No full text
    Clinical trials with immune checkpoint inhibition in sarcomas have demonstrated minimal response. Here, we interrogated the tumor microenvironment (TME) of two contrasting soft-tissue sarcomas (STS), rhabdomyosarcomas and undifferentiated pleomorphic sarcomas (UPS), with differing genetic underpinnings and responses to immune checkpoint inhibition to understand the mechanisms that lead to response. Utilizing fresh and formalin-fixed, paraffin-embedded tissue from patients diagnosed with UPS and rhabdomyosarcomas, we dissected the TME by using IHC, flow cytometry, and comparative transcriptomic studies. Our results demonstrated both STS subtypes to be dominated by tumor-associated macrophages and infiltrated with immune cells that localized near the tumor vasculature. Both subtypes had similar T-cell densities, however, their distribution diverged. UPS specimens demonstrated diffuse intratumoral infiltration of T cells, while rhabdomyosarcomas samples revealed intratumoral T cells that clustered with B cells near perivascular beds, forming tertiary lymphoid structures (TLS). T cells in UPS specimens were comprised of abundant CD8 T cells exhibiting high PD-1 expression, which might represent the tumor reactive repertoire. In rhabdomyosarcomas, T cells were limited to TLS, but expressed immune checkpoints and immunomodulatory molecules which, if appropriately targeted, could help unleash T cells into the rest of the tumor tissue. Our work in STS revealed an immunosuppressive TME dominated by myeloid cells, which may be overcome with activation of T cells that traffic into the tumor. In rhabdomyosarcomas, targeting T cells found within TLS may be key to achieve antitumor response

    Pathways of immune exclusion in metastatic osteosarcoma are associated with inferior patient outcomes

    No full text
    Background Current therapy for osteosarcoma pulmonary metastases (PMs) is ineffective. The mechanisms that prevent successful immunotherapy in osteosarcoma are incompletely understood. We investigated the tumor microenvironment of metastatic osteosarcoma with the goal of harnessing the immune system as a therapeutic strategy.Methods 66 osteosarcoma tissue specimens were analyzed by immunohistochemistry (IHC) and immune markers were digitally quantified. Tumor-infiltrating lymphocytes (TILs) from 25 specimens were profiled by functional cytometry. Comparative transcriptomic studies of distinct tumor-normal lung ‘PM interface’ and ‘PM interior’ regions from 16 PMs were performed. Clinical follow-up (median 24 months) was available from resection.Results IHC revealed a statistically significantly higher concentration of TILs expressing immune checkpoint and immunoregulatory molecules in PMs compared with primary bone tumors (including programmed cell death 1 (PD-1), programmed death ligand 1 (PD-L1), lymphocyte-activation gene 3 (LAG-3), T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), and indoleamine 2,3-dioxygenase (IDO1). Remarkably, these lymphocytes are excluded at the PM interface compared with PM interior. TILs from PMs exhibited significantly higher amounts of PD-1 and LAG-3 and functional cytokines including interferon-γ (IFNγ) by flow cytometry. Gene expression profiling further confirmed the presence of CD8 and CD4 lymphocytes concentrated at the PM interface, along with upregulation of immunoregulatory molecules and IFNγ-driven genes in the same region. We further discovered a strong alternatively activated macrophage signature throughout the entire PMs along with a polymorphonuclear myeloid-derived suppressor cell signature focused at the PM interface. Expression of PD-L1, LAG-3, and colony-stimulating factor 1 receptor (CSF1R) at the PM interface was associated with significantly worse progression-free survival (PFS), while gene sets indicative of productive T cell immune responses (CD8 T cells, T cell survival, and major histocompatibility complex class 1 expression) were associated with significantly improved PFS.Conclusions Osteosarcoma PMs exhibit immune exclusion characterized by the accumulation of TILs at the PM interface. These TILs produce effector cytokines, suggesting their capability of activation and recognition of tumor antigens. Our findings suggest cooperative immunosuppressive mechanisms in osteosarcoma PMs including immune checkpoint molecule expression and the presence of immunosuppressive myeloid cells. We identify cellular and molecular signatures that are associated with patient outcomes, which could be exploited for successful immunotherapy
    corecore