29 research outputs found

    Structure and evolution of Apetala3, a sex-linked gene in Silene latifolia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The evolution of sex chromosomes is often accompanied by gene or chromosome rearrangements. Recently, the gene <it>AP3 </it>was characterized in the dioecious plant species <it>Silene latifolia</it>. It was suggested that this gene had been transferred from an autosome to the Y chromosome.</p> <p>Results</p> <p>In the present study we provide evidence for the existence of an X linked copy of the <it>AP3 </it>gene. We further show that the Y copy is probably located in a chromosomal region where recombination restriction occurred during the first steps of sex chromosome evolution. A comparison of X and Y copies did not reveal any clear signs of degenerative processes in exon regions. Instead, both X and Y copies show evidence for relaxed selection compared to the autosomal orthologues in <it>S. vulgaris </it>and <it>S. conica</it>. We further found that promoter sequences differ significantly. Comparison of the genic region of <it>AP3 </it>between the X and Y alleles and the corresponding autosomal copies in the gynodioecious species <it>S. vulgaris </it>revealed a massive accumulation of retrotransposons within one intron of the Y copy of <it>AP3</it>. Analysis of the genomic distribution of these repetitive elements does not indicate that these elements played an important role in the size increase characteristic of the Y chromosome. However, <it>in silico </it>expression analysis shows biased expression of individual domains of the identified retroelements in male plants.</p> <p>Conclusions</p> <p>We characterized the structure and evolution of <it>AP3</it>, a sex linked gene with copies on the X and Y chromosomes in the dioecious plant <it>S. latifolia</it>. These copies showed complementary expression patterns and relaxed evolution at protein level compared to autosomal orthologues, which suggests subfunctionalization. One intron of the Y-linked allele was invaded by retrotransposons that display sex-specific expression patterns that are similar to the expression pattern of the corresponding allele, which suggests that these transposable elements may have influenced evolution of expression patterns of the Y copy. These data could help researchers decipher the role of transposable elements in degenerative processes during sex chromosome evolution.</p

    An efficient method to find potentially universal population genetic markers, applied to metazoans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the impressive growth of sequence databases, the limited availability of nuclear markers that are sufficiently polymorphic for population genetics and phylogeography and applicable across various phyla restricts many potential studies, particularly in non-model organisms. Numerous introns have invariant positions among kingdoms, providing a potential source for such markers. Unfortunately, most of the few known EPIC (Exon Primed Intron Crossing) loci are restricted to vertebrates or belong to multigenic families.</p> <p>Results</p> <p>In order to develop markers with broad applicability, we designed a bioinformatic approach aimed at avoiding multigenic families while identifying intron positions conserved across metazoan phyla. We developed a program facilitating the identification of EPIC loci which allowed slight variation in intron position. From the <it>Homolens </it>databases we selected 29 gene families which contained 52 promising introns for which we designed 93 primer pairs. PCR tests were performed on several ascidians, echinoderms, bivalves and cnidarians. On average, 24 different introns per genus were amplified in bilaterians. Remarkably, five of the introns successfully amplified in all of the metazoan genera tested (a dozen genera, including cnidarians). The influence of several factors on amplification success was investigated. Success rate was not related to the phylogenetic relatedness of a taxon to the groups that most influenced primer design, showing that these EPIC markers are extremely conserved in animals.</p> <p>Conclusions</p> <p>Our new method now makes it possible to (i) rapidly isolate a set of EPIC markers for any phylum, even outside the animal kingdom, and thus, (ii) compare genetic diversity at potentially homologous polymorphic loci between divergent taxa.</p

    Hormone-regulated expansins : expression, localization, and cell wall biomechanics in Arabidopsis root growth

    Get PDF
    Expansins facilitate cell expansion by mediating pH-dependent cell wall (CW) loosening. However, the role of expansins in controlling CW biomechanical properties in specific tissues and organs remains elusive. We monitored hormonal responsiveness and spatial specificity of expression and localization of expansins predicted to be the direct targets of cytokinin signaling in Arabidopsis (Arabidopsis thaliana). We found EXPANSIN1 (EXPA1) homogenously distributed throughout the CW of columella/lateral root cap, while EXPA10 and EXPA14 localized predominantly at 3-cell boundaries in the epidermis/cortex in various root zones. EXPA15 revealed cell-type-specific combination of homogenous vs. 3-cell boundaries localization. By comparing Brillouin frequency shift and AFM-measured Young’s modulus, we demonstrated Brillouin light scattering (BLS) as a tool suitable for non-invasive in vivo quantitative assessment of CW viscoelasticity. Using both BLS and AFM, we showed that EXPA1 overexpression upregulated CW stiffness in the root transition zone (TZ). The dexamethasone-controlled EXPA1 overexpression induced fast changes in the transcription of numerous CW-associated genes, including several EXPAs and XYLOGLUCAN: XYLOGLUCOSYL TRANSFERASEs (XTHs), and associated with rapid pectin methylesterification determined by in situ Fouriertransform infrared spectroscopy in the root TZ. The EXPA1-induced CW remodeling is associated with the shortening of the root apical meristem, leading to root growth arrest. Based on our results, we propose that expansins control root growth by a delicate orchestration of CW biomechanical properties, possibly regulating both CW loosening and CW remodeling.peer-reviewe

    Genomic Diversity in Two Related Plant Species with and without Sex Chromosomes - Silene latifolia and S. vulgaris

    Get PDF
    Genome size evolution is a complex process influenced by polyploidization, satellite DNA accumulation, and expansion of retroelements. How this process could be affected by different reproductive strategies is still poorly understood.We analyzed differences in the number and distribution of major repetitive DNA elements in two closely related species, Silene latifolia and S. vulgaris. Both species are diploid and possess the same chromosome number (2n = 24), but differ in their genome size and mode of reproduction. The dioecious S. latifolia (1C = 2.70 pg DNA) possesses sex chromosomes and its genome is 2.5× larger than that of the gynodioecious S. vulgaris (1C = 1.13 pg DNA), which does not possess sex chromosomes. We discovered that the genome of S. latifolia is larger mainly due to the expansion of Ogre retrotransposons. Surprisingly, the centromeric STAR-C and TR1 tandem repeats were found to be more abundant in S. vulgaris, the species with the smaller genome. We further examined the distribution of major repetitive sequences in related species in the Caryophyllaceae family. The results of FISH (fluorescence in situ hybridization) on mitotic chromosomes with the Retand element indicate that large rearrangements occurred during the evolution of the Caryophyllaceae family.Our data demonstrate that the evolution of genome size in the genus Silene is accompanied by the expansion of different repetitive elements with specific patterns in the dioecious species possessing the sex chromosomes

    Genomic prediction in a multiploid crop: genotype by environment interaction and allele dosage effects on predictive ability in banana

    Get PDF
    Open Access Journal; Published online: 2 March 2018Improving the efficiency of selection in conventional crossbreeding is a major priority in banana (Musa spp.) breeding. Routine application of classical marker assisted selection (MAS) is lagging in banana due to limitations in MAS tools. Genomic selection (GS) based on genomic prediction models can address some limitations of classical MAS, but the use of GS in banana has not been reported to date. The aim of this study was to evaluate the predictive ability of six genomic prediction models for 15 traits in a multi-ploidy training population. The population consisted of 307 banana genotypes phenotyped under low and high input field management conditions for two crop cycles. The single nucleotide polymorphism (SNP) markers used to fit the models were obtained from genotyping by sequencing (GBS) data. Models that account for additive genetic effects provided better predictions with 12 out of 15 traits. The performance of BayesB model was superior to other models particularly on fruit filling and fruit bunch traits. Models that included averaged environment data were more robust in trait prediction even with a reduced number of markers. Accounting for allele dosage in SNP markers (AD-SNP) reduced predictive ability relative to traditional bi-allelic SNP (BA-SNP), but the prediction trend remained the same across traits. The high predictive values (0.47– 0.75) of fruit filling and fruit bunch traits show the potential of genomic prediction to increase selection efficiency in banana breeding

    Rapid De Novo Evolution of X Chromosome Dosage Compensation in Silene latifolia, a Plant with Young Sex Chromosomes

    Get PDF
    Evidence for dosage compensation in Silene latifolia, a plant with 10-million-year-old sex chromosomes, reveals that dosage compensation can evolve rapidly in young XY systems and is not an animal-specific phenomenon

    A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome

    Get PDF
    Sex chromosomes are particularly interesting regions of the genome for both molecular genetics and evolutionary studies; yet, for most species, we lack basic information, such as the gene order along the chromosome. Because they lack recombination, Y-linked genes cannot be mapped genetically, leaving physical mapping as the only option for establishing the extent of synteny and homology with the X chromosome. Here, we developed a novel and general method for deletion mapping of non-recombining regions by solving "the travelling salesman problem", and evaluate its accuracy using simulated datasets. Unlike the existing radiation hybrid approach, this method allows us to combine deletion mutants from different experiments and sources. We applied our method to a set of newly generated deletion mutants in the dioecious plant Silene latifolia and refined the locations of the sex-determining loci on its Y chromosome map

    Transcriptome of barley under three different heavy metal stress reaction

    No full text
    In the present study, we used Illumina sequencing technology (HiSeq 2000) to sequence the transcriptome of barley (Hordeum vulgare L., cv. Morex) under three different heavy metal stress conditions: copper, zinc and cadmium. For each of those metals, the concentration causing a 50% inhibitory effect for root growth (EC50) was determined. We sequenced the total RNA of both roots and shoots from barley with and without heavy metal treatments in three replicates. Raw reads of the transcriptome project have been deposited in NCBI's BioProject accession number PRJNA382490. The obtained transcriptomic data will be useful for further studies focusing on heavy metal tolerance and comparative transcriptome analysis in barley
    corecore