13,230 research outputs found

    Microcircuit testing and fabrication, using scanning electron microscopes

    Get PDF
    Scanning electron microscopes are used to determine both user-induced damages and manufacturing defects subtle enough to be missed by conventional light microscopy. Method offers greater depth of field and increased working distances

    Gamow-Teller properties of the double beta-decay partners 116Cd(Sn) and 150Nd(Sm)

    Full text link
    The two Gamow-Teller (GT) branches connecting the double-beta decay partners (116Cd, 116Sn) and (150Nd, 150Sm) with the intermediate nuclei 116In and 150Pm are studied within a microscopic approach based on a deformed proton-neutron quasiparticle random-phase approximation built on a Skyrme selfconsistent mean field with pairing correlations and spin-isospin residual forces. The results are compared with the experimental GT strength distributions extracted from charge-exchange reactions. Combining the two branches, the nuclear matrix elements for the two-neutrino double-beta decay are evaluated and compared to experimental values derived from the measured half-lives.Comment: 10 pages, 16 figure

    Regulating Mobile Mental Health Apps

    Get PDF
    Mobile medical apps (MMAs) are a fast‐growing category of software typically installed on personal smartphones and wearable devices. A subset of MMAs are aimed at helping consumers identify mental states and/or mental illnesses. Although this is a fledgling domain, there are already enough extant mental health MMAs both to suggest a typology and to detail some of the regulatory issues they pose. As to the former, the current generation of apps includes those that facilitate self‐assessment or self‐help, connect patients with online support groups, connect patients with therapists, or predict mental health issues. Regulatory concerns with these apps include their quality, safety, and data protection. Unfortunately, the regulatory frameworks that apply have failed to provide coherent risk‐assessment models. As a result, prudent providers will need to progress with caution when it comes to recommending apps to patients or relying on app‐generated data to guide treatment

    Single-particle dispersion in stably stratified turbulence

    Get PDF
    We present models for single-particle dispersion in vertical and horizontal directions of stably stratified flows. The model in the vertical direction is based on the observed Lagrangian spectrum of the vertical velocity, while the model in the horizontal direction is a combination of a continuous-time eddy-constrained random walk process with a contribution to transport from horizontal winds. Transport at times larger than the Lagrangian turnover time is not universal and dependent on these winds. The models yield results in good agreement with direct numerical simulations of stratified turbulence, for which single-particle dispersion differs from the well studied case of homogeneous and isotropic turbulence

    New Internal Stress Driven on-Chip Micromachines for Extracting Mechanical Properties of Thin Films

    Get PDF
    A new concept of micromachines has been developed for measuring the mechanical properties of thin metallic films. The actuator is a beam undergoing large internal stresses built up during the deposition process. Al thin films are deposited partly on the actuator beam and on the substrate. By etching the structure, the actuator contracts and pulls the Al film. Full stress strain curves can be generated by designing a set of micromachines with various actuator lengths. In the present study, the displacements have been measured by scanning electronic microscopy. The stress is derived from simple continuum mechanics relationships. The tensile properties of Al films of various thicknesses have been tested. A marked increase of the strength with decreasing film thickness is observed.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    On connectivity-dependent resource requirements for digital quantum simulation of dd-level particles

    Full text link
    A primary objective of quantum computation is to efficiently simulate quantum physics. Scientifically and technologically important quantum Hamiltonians include those with spin-ss, vibrational, photonic, and other bosonic degrees of freedom, i.e. problems composed of or approximated by dd-level particles (qudits). Recently, several methods for encoding these systems into a set of qubits have been introduced, where each encoding's efficiency was studied in terms of qubit and gate counts. Here, we build on previous results by including effects of hardware connectivity. To study the number of SWAP gates required to Trotterize commonly used quantum operators, we use both analytical arguments and automatic tools that optimize the schedule in multiple stages. We study the unary (or one-hot), Gray, standard binary, and block unary encodings, with three connectivities: linear array, ladder array, and square grid. Among other trends, we find that while the ladder array leads to substantial efficiencies over the linear array, the advantage of the square over the ladder array is less pronounced. These results are applicable in hardware co-design and in choosing efficient qudit encodings for a given set of near-term quantum hardware. Additionally, this work may be relevant to the scheduling of other quantum algorithms for which matrix exponentiation is a subroutine.Comment: Accepted to QCE20 (IEEE Quantum Week). Corrected erroneous circuits in Figure

    Cram\'er-Rao bounds for synchronization of rotations

    Full text link
    Synchronization of rotations is the problem of estimating a set of rotations R_i in SO(n), i = 1, ..., N, based on noisy measurements of relative rotations R_i R_j^T. This fundamental problem has found many recent applications, most importantly in structural biology. We provide a framework to study synchronization as estimation on Riemannian manifolds for arbitrary n under a large family of noise models. The noise models we address encompass zero-mean isotropic noise, and we develop tools for Gaussian-like as well as heavy-tail types of noise in particular. As a main contribution, we derive the Cram\'er-Rao bounds of synchronization, that is, lower-bounds on the variance of unbiased estimators. We find that these bounds are structured by the pseudoinverse of the measurement graph Laplacian, where edge weights are proportional to measurement quality. We leverage this to provide interpretation in terms of random walks and visualization tools for these bounds in both the anchored and anchor-free scenarios. Similar bounds previously established were limited to rotations in the plane and Gaussian-like noise
    corecore