13 research outputs found

    Integrable Classical and Quantum Gravity

    Full text link
    In these lectures we report recent work on the exact quantization of dimensionally reduced gravity, i.e. 2d non-linear (G/H)-coset space sigma-models coupled to gravity and a dilaton. Using methods developed in the context of flat space integrable systems, the Wheeler-DeWitt equations for these models can be reduced to a modified version of the Knizhnik-Zamolodchikov equations from conformal field theory, the insertions given by singularities in the spectral parameter plane. This basic result in principle permits the explicit construction of solutions, i.e. physical states of the quantized theory. In this way, we arrive at integrable models of quantum gravity with infinitely many self-interacting propagating degrees of freedom.Comment: 41 pages, 2 figures, Lectures given at NATO Advanced Study Institute on Quantum Fields and Quantum Space Time, Cargese, France, 22 July - 3 Augus

    Integrable Classical and Quantum Gravity

    No full text
    In these lectures we report recent work on the exact quantization of dimensionally reduced gravity, i.e. 2d non-linear (G/H)-coset space sigma-models coupled to gravity and a dilaton. Using methods developed in the context of flat space integrable systems, the Wheeler-DeWitt equations for these models can be reduced to a modified version of the Knizhnik-Zamolodchikov equations from conformal field theory, the insertions given by singularities in the spectral parameter plane. This basic result in principle permits the explicit construction of solutions, i.e. physical states of the quantized theory. In this way, we arrive at integrable models of quantum gravity with infinitely many self-interacting propagating degrees of freedom

    Integrable Classical and Quantum Gravity

    Get PDF
    In these lectures we report recent work on the exact quantization of dimensionally reduced gravity, i.e. 2d non-linear (G/H)-coset space sigma-models coupled to gravity and a dilaton. Using methods developed in the context of flat space integrable systems, the Wheeler-DeWitt equations for these models can be reduced to a modified version of the Knizhnik-Zamolodchikov equations from conformal field theory, the insertions given by singularities in the spectral parameter plane. This basic result in principle permits the explicit construction of solutions, i.e. physical states of the quantized theory. In this way, we arrive at integrable models of quantum gravity with infinitely many self-interacting propagating degrees of freedom

    On 2D2D quantum gravity coupled to a \s-model

    Full text link
    This contribution is a review of the method of isomonodromic quantization of dimensionally reduced gravity. Our approach is based on the complete separation of variables in the isomonodromic sector of the model and the related ``two-time" Hamiltonian structure. This allows an exact quantization in the spirit of the scheme developed in the framework of integrable systems. Possible ways to identify a quantum state corresponding to the Kerr black hole are discussed. In addition, we briefly describe the relation of this model with Chern Simons theory.Comment: 9 pages, LaTeX style espcrc2, to appear in Proceedings of 29th International Symposium Ahrenshoop, Buckow, 199

    Poisson Realization and Quantization of the Geroch Group

    Full text link
    The conserved nonlocal charges generating the Geroch group with respect to the canonical Poisson structure of the Ernst equation are found. They are shown to build a quadratic Poisson algebra, which suggests to identify the quantum Geroch algebra with Yangian structures.Comment: 8 pages, LaTeX2

    Canonical quantization of cylindrical gravitational waves with two polarizations

    Get PDF
    The canonical quantization of the essentially nonlinear midisuperspace model describing cylindrically symmetric gravitational waves with two polarizations is presented. A Fock space type representation is constructed. It is based on a complete set of quantum observables. Physical expectation values may be calculated in arbitrary excitations of the vacuum. Our approach provides a non-linear generalization of the quantization of the collinearly polarized Einstein-Rosen gravitational waves.Comment: 8 pages, LaTeX2
    corecore