4,159 research outputs found
Novel African trypanocidal agents: membrane rigidifying peptides
The bloodstream developmental forms of pathogenic African trypanosomes are uniquely susceptible to killing by small hydrophobic peptides. Trypanocidal activity is conferred by peptide hydrophobicity and charge distribution and results from increased rigidity of the plasma membrane. Structural analysis of lipid-associated peptide suggests a mechanism of phospholipid clamping in which an internal hydrophobic bulge anchors the peptide in the membrane and positively charged moieties at the termini coordinate phosphates of the polar lipid headgroups. This mechanism reveals a necessary phenotype in bloodstream form African trypanosomes, high membrane fluidity, and we suggest that targeting the plasma membrane lipid bilayer as a whole may be a novel strategy for the development of new pharmaceutical agents. Additionally, the peptides we have described may be valuable tools for probing the biosynthetic machinery responsible for the unique composition and characteristics of African trypanosome plasma membranes
High-resolution 3D mapping of rhizosphere glycan patterning using molecular probes in a transparent soil system
Rhizospheres are microecological zones at the interface of roots and soils. Interactions between bacteria and roots are critical for maintaining plant and soil health but are difficult to study because of constraints inherent in working with underground systems. We have developed an in-situ rhizosphere imaging system based on transparent soils and molecular probes that can be imaged using confocal microscopy. We observed spatial patterning of polysaccharides along roots and on cells deposited into the rhizosphere and also co-localised fluorescently tagged soil bacteria. These studies provide insight into the complex glycan landscape of rhizospheres and suggest a means by which root / rhizobacteria interactions can be non-disruptively studied
Secondary schooling and rural youth transitions in Lesotho and Zimbabwe
Based on case studies centred on two rural secondary schools in Lesotho and Zimbabwe, this paper examines the gendered impacts of schooling on young people’s transitions to adulthood. School attendance is shown, first, to disrupt the conventional pathways to adulthood: young people attending school may leave home sooner than they otherwise would, and take responsibility for their day-to-day survival, while marriage and childbearing are often delayed. More significantly, secondary schooling reflects, and contributes to, a growing sense that adulthood itself is not fixed. An alternative version of adulthood is promoted through schools in which formal sector employment is central. Yet while young people are encouraged to opt for, and work towards, this goal, only a minority are able to obtain paid employment. The apparent possibility of determining one’s own lifecourse serves to cast the majority of young people as failures in their transitions to adulthood
MMP1 bimodal expression and differential response to inflammatory mediators is linked to promoter polymorphisms.
BACKGROUND: Identifying the functional importance of the millions of single nucleotide polymorphisms (SNPs) in the human genome is a difficult challenge. Therefore, a reverse strategy, which identifies functionally important SNPs by virtue of the bimodal abundance across the human population of the SNP-related mRNAs will be useful. Those mRNA transcripts that are expressed at two distinct abundances in proportion to SNP allele frequency may warrant further study. Matrix metalloproteinase 1 (MMP1) is important in both normal development and in numerous pathologies. Although much research has been conducted to investigate the expression of MMP1 in many different cell types and conditions, the regulation of its expression is still not fully understood. RESULTS: In this study, we used a novel but straightforward method based on agglomerative hierarchical clustering to identify bimodally expressed transcripts in human umbilical vein endothelial cell (HUVEC) microarray data from 15 individuals. We found that MMP1 mRNA abundance was bimodally distributed in un-treated HUVECs and showed a bimodal response to inflammatory mediator treatment. RT-PCR and MMP1 activity assays confirmed the bimodal regulation and DNA sequencing of 69 individuals identified an MMP1 gene promoter polymorphism that segregated precisely with the MMP1 bimodal expression. Chromatin immunoprecipitation (ChIP) experiments indicated that the transcription factors (TFs) ETS1, ETS2 and GATA3, bind to the MMP1 promoter in the region of this polymorphism and may contribute to the bimodal expression. CONCLUSIONS: We describe a simple method to identify putative bimodally expressed RNAs from transcriptome data that is effective yet easy for non-statisticians to understand and use. This method identified bimodal endothelial cell expression of MMP1, which appears to be biologically significant with implications for inflammatory disease. (271 Words).RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Solar Flare Intermittency and the Earth's Temperature Anomalies
We argue that earth's short-term temperature anomalies and the solar flare
intermittency are linked. The analysis is based upon the study of the scaling
of both the spreading and the entropy of the diffusion generated by the
fluctuations of the temperature time series. The joint use of these two methods
evidences the presence of a L\'{e}vy component in the temporal persistence of
the temperature data sets that corresponds to the one that would be induced by
the solar flare intermittency. The mean monthly temperature datasets cover the
period from 1856 to 2002.Comment: 4 pages, 5 figure
Ensemble density-functional theory for ab-initio molecular dynamics of metals and finite-temperature insulators
A new method is presented for performing first-principles molecular-dynamics
simulations of systems with variable occupancies. We adopt a matrix
representation for the one-particle statistical operator Gamma, to introduce a
``projected'' free energy functional G that depends on the Kohn-Sham orbitals
only and that is invariant under their unitary transformations. The Liouville
equation [ Gamma , H ] = 0 is always satisfied, guaranteeing a very efficient
and stable variational minimization algorithm that can be extended to
non-conventional entropic formulations or fictitious thermal distributions.Comment: 5 pages, two-column style with 2 postscript figures embedded. Uses
REVTEX and epsf macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/index.html#nm_meta
Structure of a glycosylphosphatidylinositol-anchored domain from a trypanosome variant surface glycoprotein.
The cell surface of African trypanosomes is covered by a densely packed monolayer of a single protein, the variant surface glycoprotein (VSG). The VSG protects the trypanosome cell surface from effector molecules of the host immune system and is the mediator of antigenic variation. The sequence divergence between VSGs that is necessary for antigenic variation can only occur within the constraints imposed by the structural features necessary to form the monolayer barrier. Here, the structures of the two domains that together comprise the C-terminal di-domain of VSG ILTat1.24 have been determined. The first domain has a structure similar to the single C-terminal domain of VSG MITat1.2 and provides proof of structural conservation in VSG C-terminal domains complementing the conservation of structure present in the N-terminal domain. The second domain, although based on the same fold, is a minimized version missing several structural features. The structure of the second domain contains the C-terminal residue that in the native VSG is attached to a glycosylphosphatidylinositol (GPI) anchor that retains the VSG on the external face of the plasma membrane. The solution structures of this domain and a VSG GPI glycan have been combined to produce the first structure-based model of a GPI-anchored protein. The model suggests that the core glycan of the GPI anchor lies in a groove on the surface of the domain and that there is a close association between the GPI glycan and protein. More widely, the GPI glycan may be an integral part of the structure of other GPI-anchored proteins
Dental periodontal procedures: a systematic review of contamination (splatter, droplets and aerosol) in relation to COVID-19
Introduction
The emergence of the SARS-CoV-2 virus and subsequent COVID-19 pandemic has had a significant effect on the delivery of routine dentistry; and in particular, periodontal care across the world. This systematic review examines the literature relating to splatter, droplet settle and aerosol for periodontal procedures and forms part of a wider body of research to understand the risk of contamination in relation to periodontal care procedures relevant to COVID-19.
Methods
A search of the literature was carried out using key terms and MeSH words relating to the review questions. Sources included Medline (OVID), Embase (OVID), Cochrane Central Register of Controlled Trials, Scopus, Web of Science and LILACS, ClinicalTrials.Gov. Studies meeting inclusion criteria were screened in duplicate and data extraction was carried out using a template. All studies were assessed for methodological quality and sensitivity. Narrative synthesis was undertaken.
Results
Fifty studies were included in the review with procedures including ultrasonic scaling (n = 44), air polishing (n = 4), prophylaxis (n = 2) and hand scaling (n = 3). Outcomes included bacterial (colony-forming units e.g. on settle plates) or blood contamination (e.g. visible splatter) and non bacterial, non blood (e.g. chemiluminescence or coloured dyes) contamination. All studies found contamination at all sites although the contamination associated with hand scaling was very low. Contamination was identified in all of the studies even where suction was used at baseline. Higher power settings created greater contamination. Distribution of contamination varied in relation to operator position and was found on the operator, patient and assistant with higher levels around the head of the operator and the mouth and chest of the patient. Settle was identified 30 min after treatments had finished but returned to background levels when measured at or after an hour. The evidence was generally low to medium quality and likely to underestimate contamination.
Conclusion
Ultrasonic scaling, air polishing and prophylaxis procedures produce contamination (splatter, droplets and aerosol) in the presence of suction, with a small amount of evidence showing droplets taking between 30 min and 1 h to settle. Consideration should be given to infection control, areas of cleaning particularly around the patient and appropriate personal protective equipment, with particular attention to respiratory, facial and body protection for these procedures. In addition, the use of lower power settings should be considered to reduce the amount and spread of contamination
Aerosol and splatter generation with rotary handpieces used in restorative and orthodontic dentistry:a systematic review
Abstract: Introduction: The COVID-19 pandemic has caused major disruptions in dental care globally, in part due to the potential for contaminated aerosol to be generated by dental activities. This systematic review assesses the literature for changes in aerosol-contamination levels when rotary instruments are used, (1) as distance increases from patient’s mouth; (2) as time passes after the procedure; and (3) when using different types of handpieces. Methods: The review methods and reporting are in line with PRISMA statements. A structured search was conducted over five platforms (September 2021). Studies were assessed independently by two reviewers. To be eligible studies had to assess changes in levels of aerosol contamination over different distances, and time points, with rotary hand instruments. Studies’ methodologies and the sensitivity of the contamination-measurement approaches were evaluated. Results are presented descriptively. Results: From 422 papers identified, 23 studies were eligible. All investigated restorative procedures using rotary instruments and one study additionally looked at orthodontic bracket adhesive material removal. The results suggest contamination is significantly reduced over time and distance. However, for almost all studies that investigated these two factors, the sizes of the contaminated particles were not considered, and there were inconclusive findings regarding whether electric-driven handpieces generate lower levels of contaminated particles. Conclusion: Aerosol contamination levels reduce as distances, and post-procedure times increase. However, there was sparce and inconsistent evidence on the clearing time and no conclusions could be drawn. High-speed handpieces produce significantly higher levels of contamination than slow-speed ones, and to a lesser extent, micro-motor handpieces. However, when micro-motor handpieces were used with water, the contamination levels rose and were similar to high-speed handpiece contamination levels
Patient and public involvement to inform priorities and practice for research using existing healthcare data for children’s and young people’s cancers
Background:
In the United Kingdom, healthcare data is collected on all patients receiving National Health Service (NHS) care, including children and young people (CYP) with cancer. This data is used to inform service delivery, and with special permissions used for research. The use of routinely collected health data in research is an advancing field with huge potential benefit, particularly in CYP with cancer where case numbers are small and the impact across the life course can be significant.
Patient and public involvement (PPI) exercise aims:
Identify current barriers to trust relating to the use of healthcare data for research.
Determine ways to increase public and patient confidence in the use of healthcare data in research.
Define areas of research importance to CYP and their carers using healthcare data.
//
Methods:
Young people currently aged between 16 and 25 years who had a cancer diagnosis before the age of 20 years and carers of a young person with cancer were invited to take part via social media and existing networks of service users. Data was collected during two interactive online workshops totalling 5 h and comprising of presentations from health data experts, case-studies and group discussions. With participant consent the workshops were recorded, transcribed verbatim and analysed using thematic analysis.
//
Results:
Ten young people and six carers attended workshop one. Four young people and four carers returned for workshop two. Lack of awareness of how data is used, and negative media reporting were seen as the main causes of mistrust. Better communication and education on how data is used were felt to be important to improving public confidence. Participants want the ability to have control over their own data use. Late effects, social and education outcomes and research on rare tumours were described as key research priorities for data use.
//
Conclusions:
In order to improve public and patient trust in our use of data for research, we need to improve communication about how data is used and the benefits that arise
- …