37 research outputs found

    Anomalous Self-Generated Electrostatic Fields in Nanosecond Laser-Plasma Interaction

    Full text link
    Electrostatic (E) fields associated with the interaction of a well-controlled, high-power, nanosecond laser pulse with an underdense plasma are diagnosed by proton radiography. Using a current 3D wave propagation code equipped with nonlinear and nonlocal hydrodynamics, we can model the measured E-fields that are driven by the laser ponderomotive force in the region where the laser undergoes filamentation. However, strong fields of up to 110 MV/m measured in the first millimeter of propagation cannot be reproduced in the simulations. This could point to the presence of unexpected strong thermal electron pressure gradients possibly linked to ion acoustic turbulence, thus emphasizing the need for the development of full kinetic collisional simulations in order to properly model laser-plasma interaction in these strongly nonlinear conditions.Comment: 12 pages, 4 figures, submitted to Physics of Plasma

    Characterization of hot electrons generated by laser-plasma interaction at shock ignition intensities

    Get PDF
    In an experiment carried out at the Prague Asterix Laser System at laser intensities relevant to shock ignition conditions (I > 1016 W/cm2), the heating and transport of hot electrons were studied by using several complementary diagnostics, i.e., Kα time-resolved imaging, hard x-ray filtering (a bremsstrahlung cannon), and electron spectroscopy. Ablators with differing composition from low Z (parylene N) to high Z (nickel) were used in multilayer planar targets to produce plasmas with different coronal temperature and collisionality and modify the conditions of hot-electron generation. The variety of available diagnostics allowed full characterization of the population of hot electrons, retrieving their conversion efficiency, time generation and duration, temperature, and angular divergence. The obtained results are shown to be consistent with those from detailed simulations and similar inertial confinement fusion experiments. Based on the measured data, the advantages, reliability, and complementarity of the experimental diagnostics are discussed

    A model for the nonlocal transport and the associated distribution function deformation in magnetized laser-plasmas

    No full text
    We present a model of nonlocal transport for multidimensional radiation magneto hydrodynamic codes. In laser produced plasmas, it is now believed that the heat transfert can be strongly modified by the nonlocal nature of the electron conduction. Nevertheless other mechanisms as self generated magnetic fields may affect heat transport too. The model described in this work aims at extending the formula of G. Schurtz, Ph. Nicolaï and M. Busquet [1] to magnetized plasmas. A system of nonlocal equations is derived from kinetic equations with self-consistent electric and magnetic fields. These equations are analyzed and applied to a physical problem in order to demonstrate the main features of the model

    Simulations of laser imprint reduction using underdense foams and its consequences on the hydrodynamic instability growth

    No full text
    The mechanisms of laser imprint reduction on a surface of a planar foil performed using an underdense foam are presented. The consequences on the Rayleigh–Taylor instability growth at the ablation front when the foil is accelerated are studied. The analysis is based on numerical simulations using a chain of codes: the electromagnetic paraxial code Parax provides the modifications of the intensity perturbation spectrum while the laser beam is crossing the foam. Two-dimensional axially symmetric simulations with the radiation hydrodynamic code CHIC describe the foam expansion and the foil dynamics. Finally, the perturbed flow calculations and the instability growth are investigated with the two-dimensional CHIC version in the planar geometry by using the initial and smoothed perturbation spectra. The dominant role of temporal laser smoothing during the time of foam crossing by the laser beam is demonstrated. Applications to the direct drive targets for inertial confinement fusion are discussed

    Ablation Pressure Driven by an Energetic Electron Beam in a Dense Plasma

    No full text
    International audienceAn intense beam of high energy electrons may create extremely high pressures in solid density materials. An analytical model of ablation pressure formation and shock wave propagation driven by an energetic electron beam is developed and confirmed with numerical simulations. In application to the shock-ignition approach in inertial confinement fusion, the energy transfer by fast electrons may be a dominant mechanism of creation of the igniting shock wave. An electron beam with an energy of 30 keV and energy flux 2-5 PW=cm 2 can create a pressure amplitude more than 300 Mbar for a duration of 200-300 ps in a precompressed solid material

    A reduced model for relativistic electron beam transport in solids and dense plasmas

    No full text
    International audienceA hybrid reduced model for relativistic electron beam transport based on the angular moments of the relativistic kinetic equation with a special closure is presented. It takes into account collective effects with the self-generated electromagnetic fields as well as collisional effects with the slowing down of the relativistic electrons by plasmons, bound and free electrons and their angular scattering on both ions and electrons. This model allows for fast computations of relativistic electron beam transport while describing their energy distribution evolution. Despite the loss of information concerning the angular distribution of the electron beam, the model reproduces analytical estimates in the academic case of a monodirectional and monoenergetic electron beam propagating through a warm and dense plasma and hybrid particle-in-cell simulation results in a realistic laser-generated electron beam transport case

    Numerical simulations of the HiPER baseline target

    No full text
    The European High Power laser Energy Research (HiPER) project aims at demonstrating the feasibility of high gain inertial confinement fusion (ICF) using the fast ignitor approach. A baseline target has been recently developed by Atzeni et al. [Phys. Plasmas 14, 052702 (2007)]. The radiative transport have a minor effect on the peak areal density but decreased by 20% the peak density. We have found that with 95 kJ of absorbed laser energy one can assemble the fuel with a peak density around 500 g/cm3 and a peak areal density of 1.2 g/cm2. This implies a total target gain of about 60
    corecore