4,851 research outputs found

    Surface-wave damping in a brimful circular cylinder

    Get PDF
    The natural frequencies and damping rates of surface waves in a circular cylinder with pinned-end boundary conditions are calculated in terms of the gravitational Reynolds and Bond numbers, C[minus sign]1 and B, and the slenderness of the cylinder [Lambda], in the limit C[rightward arrow]0. We consider higher-order approximations that include the effect of viscous dissipation in the Stokes boundary layers and the bulk. A comparison with clean-surface experiments by Henderson & Miles (1994) shows a satisfactory agreement except for the first axisymmetric mode, which exhibits a 26% discrepancy. The much larger dramatic discrepancy of former theoretical predictions is hereby improved and explained

    Linear oscillations of axisymmetric viscous liquid bridges

    Get PDF
    Small amplitude free oscillations of axisymmetric capillary bridges are considered for varying values of the capillary Reynolds number C-1 and the slenderness of the bridge Λ . A semi-analytical method is presented that provides cheap and accurate results for arbitrary values of C-1 and Λ ; several asymptotic limits (namely, C>> 1, C>>1, Λ >> 1 \ {and} \ |π -Λ |>> 1 ) are considered in some detail, and the associated approximate results are checked. A fairly complete picture of the (fairly complex) spectrum of the linear problem is obtained for varying values of C and Λ . Two kinds of normal modes, called capillary and hydrodynamic respectively, are almost always clearly identified, the former being associated with free surface deformation and the latter, only with the internal flow field; when C is small the damping rate associated with both kind of modes is comparable, and the hydrodynamic ones explain the appearance of secondary (steady or slowly-varying) streaming flow

    A note on the effect of surface contamination in water wave damping

    Full text link
    Asymptotic formulas are derived for the effect of contamination on surface wave damping in a brimful circular cylinder; viscosity is assumed to be small and contamination is modelled through Marangoni elasticity with insoluble surfactant. It is seen that an appropriately chosen finite Marangoni elasticity provides an explanation for a significant amount of the unexplained additional damping rate in a well-known experiment by Henderson & Miles (1994); discrepancies are within 15%, significantly lower than those encountered by Henderson & Miles (1994) under the assumption of inextensible film

    Weakly nonlinear nonaxisymmetric oscillations of capillary bridges at small viscosity

    Get PDF
    Weakly nonlinear nonaxisymmetric oscillations of a capillary bridge are considered in the limit of small viscosity. The supporting disks of the liquid bridge are subjected to small amplitude mechanical vibrations with a frequency that is close to a natural frequency. A set of equations is derived for accounting the slow dynamics of the capillary bridge. These equations describe the coupled evolution of two counter-rotating capillary waves and an associated streaming flow. Our derivation shows that the effect of the streaming flow on the capillary waves cannot be a priori ignored because it arises at the same order as the leading (cubic) nonlinearity. The system obtained is simplified, then analyzed both analytically and numerically to provide qualitative predictions of both the relevant large time dynamics and the role of the streaming flow. The case of parametric forcing at a frequency near twice a natural frequency is also considere

    On the steady streaming flow due to high-frequency vibration in nearly inviscid liquid bridges

    Get PDF
    The steady streaming flow due to vibration in capillary bridges is considered in the limiting case when both the capillary Reynolds number and the non-dimensional vibration frequency (based on the capillary time) are large. An asymptotic model is obtained that provides the streaming flow in the bulk, outside the thin oscillatory boundary layers near the disks and the interface. Numerical integration of this model shows that several symmetric and non-symmetric streaming flow patterns are obtained for varying values of the vibration parameters. As a by-product, the quantitative response of the liquid bridge to high-frequency axial vibrations of the disks is also obtained

    Multiwavelength observations of a bright impact flash during the January 2019 total lunar eclipse

    Get PDF
    We discuss here a lunar impact flash recorded during the total lunar eclipse that occurred on 2019 January 21, at 4h 41m 38.09 +- 0.01 s UT. This is the first time ever that an impact flash is unambiguously recorded during a lunar eclipse and discussed in the scientific literature, and the first time that lunar impact flash observations in more than two wavelengths are reported. The impact event was observed by different instruments in the framework of the MIDAS survey. It was also spotted by casual observers that were taking images of the eclipse. The flash lasted 0.28 seconds and its peak luminosity in visible band was equivalent to the brightness of a mag. 4.2 star. The projectile hit the Moon at the coordinates 29.2 +- 0.3 ^{\circ}S, 67.5 +- 0.4 ^{\circ}W. In this work we have investigated the most likely source of the projectile, and the diameter of the new crater generated by the collision has been calculated. In addition, the temperature of the lunar impact flash is derived from the multiwavelength observations. These indicate that the blackbody temperature of this flash was of about 5700 K.Comment: Accepted for publication in MNRAS on 2019 March 2

    Chaotic oscillations in a nearly inviscid, axisymmetric capillary bridge at 2:1 parametric resonance

    Get PDF
    We consider the 2:1 internal resonances (such that Ω1>0 and Ω2 ≃ 2Ω1 are natural frequencies) that appear in a nearly inviscid, axisymmetric capillary bridge when the slenderness Λ is such that 0<Λ<π (to avoid the Rayleigh instability) and only the first eight capillary modes are considered. A normal form is derived that gives the slow evolution (in the viscous time scale) of the complex amplitudes of the eigenmodes associated with Ω1 and Ω2, and consists of two complex ODEs that are balances of terms accounting for inertia, damping, detuning from resonance, quadratic nonlinearity, and forcing. In order to obtain quantitatively good results, a two-term approximation is used for the damping rate. The coefficients of quadratic terms are seen to be nonzero if and only if the eigenmode associated with Ω2 is even. In that case the quadratic normal form possesses steady states (which correspond to mono- or bichromatic oscillations of the liquid bridge) and more complex periodic or chaotic attractors (corresponding to periodically or chaotically modulated oscillations). For illustration, several bifurcation diagrams are analyzed in some detail for an internal resonance that appears at Λ ≃ 2.23 and involves the fifth and eighth eigenmodes. If, instead, the eigenmode associated with Ω2 is odd, and only one of the eigenmodes associated with Ω1 and Ω2 is directly excited, then quadratic terms are absent in the normal form and the associated dynamics is seen to be fairly simple

    Determination of 15N stable isotope natural abundances for assessing the use of saline reclaimed water in grapefruit

    Get PDF
    We reported the results of an isotopic study aimed at evaluating the medium to long-term effects of different water qualities and deficit irrigation strategies on the ecophysiology of grapefruit in a 7-year-old plantation in SE Spain. For a better understanding of the interaction between nitrogen and salts from reclaimed water, RW, an experiment using natural abundance (δ) of 15N was conducted. This study showed that in grapefruit crop irrigated with RW leaf δ15N value increased. We concluded that: (i) causal links exist between leaf δ15N isotope and salt stress: positive correlation between values of this isotope and leaf salt content was showed; (ii) excess of nitrates provided by the reclaimed irrigation water were lost in the ecosystem through leaching, denitrification, etc., enriching the medium with δ15N and increasing δ15N values in plants. Therefore, the results of this study highlight the key role that salt content from RW can play in N uptake by plants and, hence, isotopic discrimination of leaf N. Consequently, it has been demonstrated the usefulness of isotopic discrimination measure to predict crop sustainability in the medium to long term when using water sources of different quality combined with deficit irrigation strategies

    In-loop Feature Tracking for Structure and Motion with Out-of-core Optimization

    Get PDF
    In this paper, a novel and approach for obtaining 3D models from video sequences captured with hand-held cameras is addressed. We define a pipeline that robustly deals with different types of sequences and acquiring devices. Our system follows a divide and conquer approach: after a frame decimation that pre-conditions the input sequence, the video is split into short-length clips. This allows to parallelize the reconstruction step which translates into a reduction in the amount of computational resources required. The short length of the clips allows an intensive search for the best solution at each step of reconstruction which robustifies the system. The process of feature tracking is embedded within the reconstruction loop for each clip as opposed to other approaches. A final registration step, merges all the processed clips to the same coordinate fram

    Effect of deficit irrigation and reclaimed water on yield and quality of grapefruits at harvest and postharvest

    Get PDF
    The aim of our research was to discover the effects of the long-term irrigation with saline reclaimed (RW) and transfer (TW) water and different irrigation strategies: control (C) and regulated deficit irrigation (RDI) on yield and fruit quality of grapefruit at harvest and during cold storage. T W-RDI treatment decreased tree canopy (TC) and crop load, resulting in a 21% reduction of fruit yield. Regarding fruit quality, RW notably decreased peel thickness at harvest (about 8%); however, this difference was not remained during cold storage. Sugar/acid ratio was mainly increased by RDI, but also by RW, due to an important increase in soluble solid content (11% of average value for TW-RDI, RW-C and RW-RDI). In addition, RDI combined with RW, significantly increased the number of fruits in small category 5 at the end of cold storage. Finally, neither ratio yield/TC nor irrigation water productivity were affected by any irrigation treatments.This study was supported by two CICYT projects (AGL2010-17553 and AGL2013-49047-C2- 515 2-R) projects and SENECA-Excelencia Científica (19903/GERM/15)
    corecore