160 research outputs found

    Tax policy and income inequality in the U.S., 1978—2009: A decomposition approach

    Get PDF
    We assess the effects of U.S. tax policy reforms on inequality by applying a new decomposition method that allows us to disentangle mechanical effects due to changes in pre-tax incomes from direct effects of policy reforms. While tax reforms implemented under Democrat administrations, in particular the EITC reforms in the 1990s and the ARRA in 2009, had an equalizing effect at the lower half of the distribution, the disequalizing effects of Republican reforms are due to tax cuts for high-income families. As a consequence of partisan politics, overall policy effects almost cancel out over the whole time period.Tax policy, Inequality, Redistribution, Political Economy, Great Recession

    Tax Policy and Income Inequality in the U.S., 1978-2009: A Decomposition Approach

    Get PDF
    We assess the effects of U.S. tax policy reforms on inequality by applying a new decomposition method that allows us to disentangle mechanical effects due to changes in pre-tax incomes from direct effects of policy reforms. While tax reforms implemented under Democrat administrations, in particular the EITC reforms in the 1990s and the ARRA in 2009, had an equalizing effect at the lower half of the distribution, the disequalizing effects of Republican reforms are due to tax cuts for high-income families. As a consequence of partisan politics, overall policy effects almost cancel out over the whole time period.political economy, redistribution, inequality, tax policy, Great Recession

    The Impact of Research Design on the Compromise Effect

    Get PDF
    This work investigates the impact of research design on the results of the compromise effect, using meta-analytic evidence. The findings suggest that experimental characteristics have a major impact on the obtained extremeness aversion results, while sample characteristics have little impact. We discuss implications and methodological recommendations based on our analysis

    Fabrication of micro-structured surfaces with increased light absorption and their influence on intense laser-plasma experiments

    Get PDF
    The thesis reports on the influence of customisable and highly light absorbing surfaces on laser-plasma experiments. For the first time, a thin microstructured silicon substrate is interacting with a short laser pulse with peak intensity exceeding 1020 W=cm2. In this process, electrons are accelerated and pushed into the target to relativistic energies. Furthermore, ions are accelerated perpendicular to the target surfaces and electromagnetic radiation is generated. In the framework of this work, a fabrication setup is developed that produces customisable structured silicon surfaces using a laser-assisted ablation and etching process with light pulses of femtosecond pulse length and the effect of laser-induced periodic surface structures (LIPSS). The evolving structure consists of conical silicon spikes with a significant increase in light absorption over a broad spectral range in the visible and infrared region. The experimental setup is demonstrated together with a characterisation of the resulting surface structures. Thereby, a precise prediction of needle height and separation is possible. Following, these structured silicon targets are compared to flat foils and different periodic geometric structures, typically used in laser-plasma experiments, in an experimental campaign using the petawatt class Vulcan laser system of the Central Laser Facility, Oxfordshire, UK. Spectral and spatial investigation of reflected laser light, X-ray generation, electron and ion acceleration in the experiment demonstrate an enhanced performance of the robust microstructured silicon needle structure facing the incident laser pulse. A significant increase in high energetic electrons, ions and brilliant X-ray radiation is observed in comparison to flat foils and targets with geometric structures. Reflection losses from the interaction area are decreased substantially. With the results of the experimental campaign a combination of the microstructured silicon surfaces with different materials is motivated. E.g. proton-rich materials can generate a reliable and auspicious source of laser-accelerated protons. Joining the structured target with a confined piece of material, pointlike sources of brilliant X-ray radiation of selectable photon energy become available. Employing the fabrication setup developed within the framework of this thesis a valuable addition to the scope of the Detektor & Targetlabor is given. The further development of the setup towards high-repetition rate laser facilities, production of customisable and more complex targets and evaluation of applications for highly light absorbing surfaces is promising

    Tax policy and income inequality in the U.S., 1979 - 2007

    Full text link
    We assess the effects of U.S. tax policy reforms on inequality by applying a new de- composition method allowing us to disentangle the policy effect from changing market incomes. Over the period 1979-2007, the cumulative policy effect aggravated inequal- ity by increasing the income share of the top 20% in contrast to the middle class' share. The tax policy effect accounts for up to 29% of the total change in inequality; its contribution increases up to 41% if we take into account behavioral responses. While Republican policymakers increased inequality especially at the top, Democrats increased the income share of the bottom 80%

    Nonergodicity in Load and Recovery:Group Results Do Not Generalize to Individuals

    Get PDF
    PURPOSE: The study of load and recovery gained significant interest in the last decades, given its important value in decreasing the likelihood of injuries and improving performance. So far, findings are typically reported on the group level, whereas practitioners are most often interested in applications at the individual level. Hence, the aim of the present research is to examine to what extent group-level statistics can be generalized to individual athletes, which is referred to as the "ergodicity issue." Nonergodicity may have serious consequences for the way we should analyze, and work with, load and recovery measures in the sports field. METHODS: The authors collected load, that is, rating of perceived exertion Ă— training duration, and total quality of recovery data among youth male players of a professional football club. This data were collected daily across 2 seasons and analyzed on both the group and the individual level. RESULTS: Group- and individual-level analysis resulted in different statistical outcomes, particularly with regard to load. Specifically, SDs within individuals were up to 7.63 times larger than SDs between individuals. In addition, at either level, the authors observed different correlations between load and recovery. CONCLUSIONS: The results suggest that the process of load and recovery in athletes is nonergodic, which has important implications for the sports field. Recommendations for training programs of individual athletes may be suboptimal, or even erroneous, when guided by group-level outcomes. The utilization of individual-level analysis is key to ensure the optimal balance of individual load and recovery

    Drug-induced Fanconi syndrome associated with fumaric acid esters treatment for psoriasis: A case series

    Get PDF
    Background: Fumaric acid esters (FAEs), an oral immunomodulating treatment for psoriasis and multiple sclerosis, have been anecdotally associated with proximal renal tubular dysfunction due to a drug-induced Fanconi syndrome. Few data are available on clinical outcomes of FAE-induced Fanconi syndrome. Methods: Descriptive case series with two cases of Fanconi syndrome associated with FAE treatment diagnosed at two Dutch university nephrology departments, three cases reported at the Dutch and German national pharmacovigilance databases and six previously reported cases. Results: All 11 cases involved female patients with psoriasis. The median age at the time of onset was 38 years [interquartile range (IQR) 37-46]. Patients received long-term FAEs treatment with a median treatment duration of 60 months (IQR 28-111). Laboratory tests were typically significant for low serum levels of phosphate and uric acid, while urinalysis showed glycosuria and proteinuria. Eight (73%) patients had developed a hypophosphataemic osteomalacia and three (27%) had pathological bone fractures. All patients discontinued FAEs, while four (36%) patients were treated with supplementation of phosphate and/or vitamin D. Five (45%) patients had persisting symptoms despite FAEs discontinuation. Conclusions: FAEs treatment can cause drug-induced Fanconi syndrome, but the association has been reported infrequently. Female patients with psoriasis treated long term with FAEs seem to be particularly at risk. Physicians treating patients with FAEs should be vigilant and monitor for the potential occurrence of Fanconi syndrome. Measurement of the urinary albumin:total protein ratio is a suggested screening tool for tubular proteinuria in Fanconi syndrome

    Liquid polystyrene: a room-temperature photocurable soft lithography compatible pour-and-cure-type polystyrene

    Get PDF
    Materials matter in microfluidics. Since the introduction of soft lithography as a prototyping technique and polydimethylsiloxane (PDMS) as material of choice the microfluidics community has settled with using this material almost exclusively. However{,} for many applications PDMS is not an ideal material given its limited solvent resistance and hydrophobicity which makes it especially disadvantageous for certain cell-based assays. For these applications polystyrene (PS) would be a better choice. PS has been used in biology research and analytics for decades and numerous protocols have been developed and optimized for it. However{,} PS has not found widespread use in microfluidics mainly because{,} being a thermoplastic material{,} it is typically structured using industrial polymer replication techniques. This makes PS unsuitable for prototyping. In this paper{,} we introduce a new structuring method for PS which is compatible with soft lithography prototyping. We develop a liquid PS prepolymer which we term as {"}Liquid Polystyrene{"} (liqPS). liqPS is a viscous free-flowing liquid which can be cured by visible light exposure using soft replication templates{,} e.g.{,} made from PDMS. Using liqPS prototyping microfluidic systems in PS is as easy as prototyping microfluidic systems in PDMS. We demonstrate that cured liqPS is (chemically and physically) identical to commercial PS. Comparative studies on mouse fibroblasts L929 showed that liqPS cannot be distinguished from commercial PS in such experiments. Researchers can develop and optimize microfluidic structures using liqPS and soft lithography. Once the device is to be commercialized it can be manufactured using scalable industrial polymer replication techniques in PS - the material is the same in both cases. Therefore{,} liqPS effectively closes the gap between {"}microfluidic prototyping{"} and {"}industrial microfluidics{"} by providing a common material

    Measurement of the solar neutrino capture rate with gallium metal

    Get PDF
    The solar neutrino capture rate measured by the Russian-American Gallium Experiment (SAGE) on metallic gallium during the period January 1990 through December 1997 is 67.2 (+7.2-7.0) (+3.5-3.0) SNU, where the uncertainties are statistical and systematic, respectively. This represents only about half of the predicted Standard Solar Model rate of 129 SNU. All the experimental procedures, including extraction of germanium from gallium, counting of 71Ge, and data analysis are discussed in detail.Comment: 34 pages including 14 figures, Revtex, slightly shortene
    • …
    corecore