135 research outputs found
The charmonium and bottomonium mass spectroscopy with a simple approximaton of the kinetic term
In this paper we propose a particular description of meson spectroscopy, with
emphasis in heavy bound states like charmonia and bottomonia, after working on
the main aspects of the construction of an effective potential model. We use
the prerogatives from ``soft QCD'' to determine the effective potential terms,
establishing the asymptotic Coulomb term from one gluon exchange approximation.
At the same time, a linear confinement term is introduced in agreement with QCD
and phenomenological prescription. The main aspect of this work is the
simplification in the calculation, consequence of a precise and simplified
description of the kinetic term of the Hamiltonian. With this proposition we
perform the calculations of mass spectroscopy for charmonium and bottomonium
mesons and we discuss the real physical possibilities of developing a
generalized potential model, its possible advantages relative to experimental
parameterization and complexity in numerical calculations
Large Possible retardation effects of quark confinement on the meson spectrum II
We present the results of a study of heavy-light-quark bound states in the
context of the reduced Bethe-Salpeter equation with relativistic vector and
scalar interactions. We find that satisfactory fits may also be obtained when
the retarded effect of the quark-antiquark interaction is concerned.Comment: 11 pages, RevTex, to appear in PR
Possible retardation effects of quark confinement on the meson spectrum
The reduced Bethe-Salpeter equation with scalar confinement and vector gluon
exchange is applied to quark-antiquark bound states. The so called intrinsic
flaw of Salpeter equation with static scalar confinement is investigated. The
notorious problem of narrow level spacings is found to be remedied by taking
into consideration the retardation effect of scalar confinement. Good fit for
the mass spectrum of both heavy and light quarkomium states is then obtained.Comment: 14 pages in LaTex for
Recognition of Face Identity and Emotion in Expressive Specific Language Impairment
Objective: To study face and emotion recognition in children with mostly expressive specific language impairment (SLI-E). Subjects and Methods: A test movie to study perception and recognition of faces and mimic-gestural expression was applied to 24 children diagnosed as suffering from SLI-E and an age-matched control group of normally developing children. Results: Compared to a normal control group, the SLI-E children scored significantly worse in both the face and expression recognition tasks with a preponderant effect on emotion recognition. The performance of the SLI-E group could not be explained by reduced attention during the test session. Conclusion: We conclude that SLI-E is associated with a deficiency in decoding non-verbal emotional facial and gestural information, which might lead to profound and persistent problems in social interaction and development. Copyright (C) 2012 S. Karger AG, Base
Learning Combinations of Multiple Feature Representations for Music Emotion Prediction
Music consists of several structures and patterns evolving through time which greatly influences the human decoding of higher-level cognitive aspects of music like the emotions expressed in music. For tasks, such as genre, tag and emotion recognition, these structures have often been identified and used as individual and non-temporal features and representations. In this work, we address the hypothesis whether using multiple temporal and non-temporal representations of different features is beneficial for modeling music structure with the aim to predict the emotions expressed in music. We test this hypothesis by representing temporal and non-temporal structures using generative models of multiple audio features. The representations are used in a discriminative setting via the Product Probability Kernel and the Gaussian Process model enabling Multiple Kernel Learning, finding optimized combinations of both features and temporal/ non-temporal representations. We show the increased predictive performance using the combination of different features and representations along with the great interpretive prospects of this approach
Probabilistic Reconstruction in Compressed Sensing: Algorithms, Phase Diagrams, and Threshold Achieving Matrices
Compressed sensing is a signal processing method that acquires data directly
in a compressed form. This allows one to make less measurements than what was
considered necessary to record a signal, enabling faster or more precise
measurement protocols in a wide range of applications. Using an
interdisciplinary approach, we have recently proposed in [arXiv:1109.4424] a
strategy that allows compressed sensing to be performed at acquisition rates
approaching to the theoretical optimal limits. In this paper, we give a more
thorough presentation of our approach, and introduce many new results. We
present the probabilistic approach to reconstruction and discuss its optimality
and robustness. We detail the derivation of the message passing algorithm for
reconstruction and expectation max- imization learning of signal-model
parameters. We further develop the asymptotic analysis of the corresponding
phase diagrams with and without measurement noise, for different distribution
of signals, and discuss the best possible reconstruction performances
regardless of the algorithm. We also present new efficient seeding matrices,
test them on synthetic data and analyze their performance asymptotically.Comment: 42 pages, 37 figures, 3 appendixe
A European Perspective on Auditory Processing Disorder-Current Knowledge and Future Research Focus
Current notions of “hearing impairment,” as reflected in clinical audiological practice, do not acknowledge the needs of individuals who have normal hearing pure tone sensitivity but who experience auditory processing difficulties in everyday life that are indexed by reduced performance in other more sophisticated audiometric tests such as speech audiometry in noise or complex non-speech sound perception. This disorder, defined as “Auditory Processing Disorder” (APD) or “Central Auditory Processing Disorder” is classified in the current tenth version of the International Classification of diseases as H93.25 and in the forthcoming beta eleventh version. APDs may have detrimental effects on the affected individual, with low esteem, anxiety, and depression, and symptoms may remain into adulthood. These disorders may interfere with learning per se and with communication, social, emotional, and academic-work aspects of life. The objective of the present paper is to define a baseline European APD consensus formulated by experienced clinicians and researchers in this specific field of human auditory science. A secondary aim is to identify issues that future research needs to address in order to further clarify the nature of APD and thus assist in optimum diagnosis and evidence-based management. This European consensus presents the main symptoms, conditions, and specific medical history elements that should lead to auditory processing evaluation. Consensus on definition of the disorder, optimum diagnostic pathway, and appropriate management are highlighted alongside a perspective on future research focus
Comparing the clinical effectiveness of different new-born hearing screening strategies. A decision analysis
BACKGROUND: Children with congenital hearing impairment benefit from early detection and treatment. At present, no model exists which explicitly quantifies the effectiveness of universal newborn hearing screening (UNHS) versus other programme alternatives in terms of early diagnosis. It has yet to be considered whether early diagnosis (within the first few months) of hearing impairment is of importance with regard to the further development of the child compared with effects resulting from a later diagnosis. The objective was to systematically compare two screening strategies for the early detection of new-born hearing disorders, UNHS and risk factor screening, with no systematic screening regarding their influence on early diagnosis. METHODS: Design: Clinical effectiveness analysis using a Markov Model. Data Sources: Systematic literature review, empirical data survey, and expert opinion. Target Population: All newborn babies. Time scale: 6, 12 and 120 months. Perspective: Health care system. Compared Strategies: UNHS, Risk factor screening (RS), no systematic screening (NS). Outcome Measures: Quality weighted detected child months (QCM). RESULTS: UNHS detected 644 QCM up until the age of 6 months (72,2%). RS detected 393 child months (44,1%) and no systematic screening 152 child months (17,0%). UNHS detected 74,3% and 86,7% weighted child months at 12 and 120 months, RS 48,4% and 73,3%, NS 23,7% and 60,6%. At the age of 6 months UNHS identified approximately 75% of all children born with hearing impairment, RS 50% and NS 25%. At the time of screening UNHS marked 10% of screened healthy children for further testing (false positives), RS 2%. UNHS demonstrated higher effectiveness even under a wide range of relevant parameters. The model was insensitive to test parameters within the assumed range but results varied along the prevalence of hearing impairment. CONCLUSION: We have shown that UNHS is able to detect hearing impairment at an earlier age and more accurately than selective RS. Further research should be carried out to establish the effects of hearing loss on the quality of life of an individual, its influence on school performance and career achievement and the differences made by early fitting of a hearing aid on these factors
- …