19 research outputs found

    Sustained increases in skin blood flow are not a pre-requisite to initiate sweating during passive heat exposure

    Full text link
    Some studies have observed a functional relationship between sweating and skin blood flow. However, the implications of this relationship during physiologically relevant conditions remain unclear. We manipulated sudomotor activity through changes in sweating efficiency to determine if parallel changes in vasomotor activity are observed. Eight young men completed two trials at 36°C and two trials at 42°C. During these trials, air temperature remained constant while ambient vapor pressure increased from 1.6 to 5.6 kPa over 2 h. Forced airflow across the skin was used to create conditions of high (HiSeff) or low (LoSeff) sweating efficiency. Local sweat rate (LSR), local skin blood flow (SkBF), as well as mean skin and esophageal temperatures were measured continuously. It took longer for LSR to increase during HiSeff at 36°C (HiSeff: 99 ± 11 vs. LoSeff: 77 ± 11 min, P < 0.01) and 42°C (HiSeff: 72 ± 16 vs. LoSeff: 51 ± 15 min, P < 0.01). In general, an increase in LSR preceded the increase in SkBF when expressed as ambient vapor pressure and time for all conditions (P < 0.05). However, both responses were activated at a similar change in mean body temperature (average across all trials, LSR: 0.26 ± 0.15 vs. SkBF: 0.30 ± 0.18°C, P = 0.26). These results demonstrate that altering the point at which LSR is initiated during heat exposure is paralleled by similar shifts for the increase in SkBF. However, local sweat production occurs before an increase in SkBF, suggesting that SkBF is not necessarily a prerequisite for sweating

    Heart rate and body temperature responses to extreme heat and humidity with and without electric fans

    Get PDF
    Patz et al1 described the projected effects of more prolonged and severe heat waves on human health. A simple, low-cost cooling device is an electric fan. A Cochrane review2 concluded “no evidence currently exists supporting or refuting the use of electric fans during heat waves” for mortality and morbidity. However, public health guidance typically warns against fan use in hot weather. Recommended upper limits range from 32.3°C (90°F) at 35% relative humidity (RH) to the high 90s (96-99°F; 35.6-37.2°C, no RH stated2). The skin-to-air temperature gradient reverses with rising environmental temperature, causing dry heat transfer toward the body via convection rather than away from it. Fan use would increase this dry heat transfer, potentially accelerating body heating3,4; however, the efficiency of sweat evaporation from the skin would be simultaneously increased. Thus, fans could still improve net heat loss. Sweat evaporation declines with increasing humidity, so in more humid environments fans may not prevent heat-induced elevations in cardiovascular (heart rate, HR) and thermal (core temperature) strain. This study examined the influence of fan use on the critical humidities at which hot environments can no longer be physiologically tolerated without rapid increases in HR and core temperature

    Should electric fans be used during a heat wave?

    Get PDF
    Heat waves continue to claim lives, with the elderly and poor at greatest risk. A simple and cost-effective intervention is an electric fan, but public health agencies warn against their use despite no evidence refuting their efficacy in heat waves. A conceptual human heat balance model can be used to estimate the evaporative requirement for heat balance, the potential for evaporative heat loss from the skin, and the predicted sweat rate, with and without an electrical fan during heat wave conditions. Using criteria defined by the literature, it is clear that fans increase the predicted critical environmental limits for both the physiological compensation of endogenous/exogenous heat, and the onset of cardiovascular strain by an air temperature of ~3-4°C, irrespective of relative humidity (RH) for the young and elderly. Even above these critical limits, fans would apparently still provide marginal benefits at air temperatures as high as 51.1°C at 10%RH for young adults and 48.1°C at 10%RH for the elderly. Previous concerns that dehydration would be exacerbated with fan use do not seem likely, except under very hot (>40°C) and dry (<10%RH) conditions, when predicted sweat losses are only greater with fans by a minor amount (~20-30 mL/hour). Relative to the peak outdoor environmental conditions reported during ten of the most severe heat waves in recent history, fan use would be advisable in all of these situations, even when reducing the predicted maximum sweat output for the elderly. The protective benefit of fans appears to be underestimated by current guidelines

    The biophysical and physiological basis for mitigated elevations in heart rate with electric fan use in extreme heat and humidity.

    Get PDF
    Electric fan use in extreme heat wave conditions has been thought to be disadvantageous because it might accelerate heat gain to the body via convection. However, it has been recently shown that fan use delays increases in heart rate even at high temperatures (42 °C) in young adults. We here assess the biophysical and physiological mechanisms underlying the apparently beneficial effects of fan use. Eight males (24 ± 3 y; 80.7 ± 11.7 kg; 2.0 ± 0.1 m(2)) rested at either 36 °C or 42 °C, with (F) or without (NF) electric fan use (4.2 m/s) for 120 min while humidity increased every 7.5 min by 0.3 kPa from a baseline value of 1.6 kPa. Heart rate (HR), local sweat rate (LSR), cutaneous vascular conductance (CVC), core and mean skin temperatures, and the combined convective/radiative heat loss (C+R), evaporative heat balance requirements (Ereq) and maximum evaporative potential (Emax) were assessed. C+R was greater with fan use at 36 °C (F 8 ± 6, NF 2 ± 2 W/m(2); P = 0.04) and more negative (greater dry heat gain) with fan use at 42 °C (F -78 ± 4, NF -27 ± 2 W/m(2); P  0.05). These results suggest that the delayed increase in heart rate with fan use during extreme heat and humidity is associated with improved evaporative efficiency

    24-h movement behaviour, thermal perception, thirst, and heat management strategies of children and adults during heat alerts: a pilot study

    Get PDF
    Background: Heat waves caused by climate change are increasingly challenging the wellbeing of individuals across the lifespan. Current efforts to understand the thermal perceptions and behaviours of people throughout the lifespan during heat waves are limited.Methods: Since June 2021, the Active Heatwave project has been recruiting households to better understand how individuals perceive, cope, and behave during heat waves. Using our novel web platform, participants were prompted to answer our Heat Alert Survey on days when a participants geolocation corresponded to a broadcasted local heat alert. Participants provided 24-h movement behaviour, thirst, thermal perception, and cooling strategies via validated questionnaires.Results: A total of 285 participants (118 children) from 60 distinct weather station locations globally participated between June and September 2021 and 2022. At least 1 heat alert (834 total) were identified from 95% (57/60) of the weather stations. Children reported spending more time performing vigorous intensity exercise compared to adults (p &lt; 0.05), but no differences in thermal sensation, thermal comfort, or thirst sensation (all p &gt; 0.31) were observed. For thirst management, 88% of respondents used water to relieve thirst, although notably, 15% of adults reported using alcohol. Regardless of age, staying indoors was the most common heat management strategy, whereas visiting cooling centres was the least.Conclusion: The present study presents a proof-of-concept combining local heat alert notifications with e-questionnaires for collecting near-real-time perceptual and behavioural data for both children and adults during heat waves. The observed patterns of behaviour suggest that present public heat-health guidelines are often ignored, children engage in fewer heat management strategies compared to adults, and these disparities highlight the need to improve public health communication and knowledge dissemination around promoting effective and accessible cooling solutions for children and adults
    corecore