50 research outputs found

    The role of renal transporters and novel regulatory interactions in the TAL that control blood pressure

    Get PDF
    Hypertension (HTN), a major public health issue is currently the leading factor in the global burden of disease, where associated complications account for 9.4 million deaths worldwide every year (98). Excessive dietary salt intake is among the environmental factors that contribute to HTN, known as salt sensitivity. The heterogeneity of salt sensitivity and the multiple mechanisms that link high salt intake to increases in blood pressure are of upmost importance for therapeutic application. A continual increase in the kidney's reabsorption of sodium (Na+) relies on sequential actions at various segments along the nephron. When the distal segments of the nephron fail to regulate Na+, the effects on Na+ homeostasis are unfavourable. We propose that the specific nephron region where increased active uptake occurs as a result of variations in Na+ reabsorption is at the thick ascending limb of the loop of Henle (TAL). The purpose of this review is to urge the consideration of the TAL that contributes to the pathophysiology of salt sensitive HTN. Further research in this area will enable development of a therapeutic application for targeted treatment

    Salt stress in the renal tubules is Linked to TAL specific expression of uromodulin and an upregulation of heat shock genes

    Get PDF
    Previously, our comprehensive cardiovascular characterisation study validated Uromodulin as a blood pressure gene. Uromodulin is a glycoprotein exclusively synthesised at the thick ascending limb of the loop of Henle and is encoded by the Umod gene. Umod(-/-) mice have significantly lower blood pressure than Umod(+/+) mice, are resistant to salt-induced changes in blood pressure, and show a leftward shift in pressure-natriuresis curves reflecting changes of sodium reabsorption. Salt stress triggers transcription factors and genes that alter renal sodium reabsorption. To date there are no studies on renal transcriptome responses to salt stress. Here we aimed to delineate salt stress pathways in tubules isolated from Umod(+/+) mice (a model of sodium retention) and Umod(-/-) mice (a model of sodium depletion) +/-300mOsmol sodium chloride (n=3 per group) performing RNA-Seq. In response to salt stress, the tubules of Umod(+/+) mice displayed an up regulation of heat shock transcripts. The greatest changes occurred in the expression of: Hspa1a (Log2 fold change 4.35, p=2.48e-12) and Hspa1b (Log2 fold change 4.05, p=2.48e-12). This response was absent in tubules of Umod(-/-) mice. Interestingly, 7 of the genes discordantly expressed in the Umod(-/-) tubules were electrolyte transporters. Our results are the first to show that salt stress in renal tubules alters the transcriptome, increasing the expression of heat shock genes. This direction of effect in Umod(+/+) tubules suggest the difference is due to the presence of Umod facilitating greater sodium entry into the tubule cell reflecting a specific response to salt stress

    Enteropathy-associated T cell lymphoma subtypes are characterized by loss of function of SETD2

    Get PDF
    Enteropathy-associated T cell lymphoma (EATL) is a lethal, and the most common, neoplastic complication of celiac disease. Here, we defined the genetic landscape of EATL through whole-exome sequencing of 69 EATL tumors. SETD2 was the most frequently silenced gene in EATL (32% of cases). The JAK-STAT pathway was the most frequently mutated pathway, with frequent mutations in STAT5B as well as JAK1 , JAK3 , STAT3 , and SOCS1 . We also identified mutations in KRAS , TP53 , and TERT . Type I EATL and type II EATL (monomorphic epitheliotropic intestinal T cell lymphoma) had highly overlapping genetic alterations indicating shared mechanisms underlying their pathogenesis. We modeled the effects of SETD2 loss in vivo by developing a T cell–specific knockout mouse. These mice manifested an expansion of γδ T cells, indicating novel roles for SETD2 in T cell development and lymphomagenesis. Our data render the most comprehensive genetic portrait yet of this uncommon but lethal disease and may inform future classification schemes

    Characterizing Emerging Canine H3 Influenza Viruses.

    Get PDF
    The continual emergence of novel influenza A strains from non-human hosts requires constant vigilance and the need for ongoing research to identify strains that may pose a human public health risk. Since 1999, canine H3 influenza A viruses (CIVs) have caused many thousands or millions of respiratory infections in dogs in the United States. While no human infections with CIVs have been reported to date, these viruses could pose a zoonotic risk. In these studies, the National Institutes of Allergy and Infectious Diseases (NIAID) Centers of Excellence for Influenza Research and Surveillance (CEIRS) network collaboratively demonstrated that CIVs replicated in some primary human cells and transmitted effectively in mammalian models. While people born after 1970 had little or no pre-existing humoral immunity against CIVs, the viruses were sensitive to existing antivirals and we identified a panel of H3 cross-reactive human monoclonal antibodies (hmAbs) that could have prophylactic and/or therapeutic value. Our data predict these CIVs posed a low risk to humans. Importantly, we showed that the CEIRS network could work together to provide basic research information important for characterizing emerging influenza viruses, although there were valuable lessons learned

    Estrogen-TNF interactions and vascular inflammation

    No full text

    Induction of Renal Tumor Necrosis Factor-α and Other Autacoids and the Beneficial Effects of Hypertonic Saline in Acute Decompensated Heart Failure

    No full text
    Although administration of hypertonic saline (HSS) in combination with diuretics has yielded improved weight loss, preservation of renal function, and reduction in hospitalization time in the clinical setting of patients with acute decompensated heart failure (ADHF), the mechanisms that underlie these beneficial effects remain unclear and additional studies are needed before this approach can be adopted on a more consistent basis. As high salt conditions stimulate the production of several renal autacoids that exhibit natriuretic effects, renal physiologists can contribute to the understanding of mechanisms by which HSS leads to increased diuresis both as an individual therapy as well as in combination with loop diuretics. For instance, since HSS increases TNF-α production by proximal tubule and thick ascending limb of Henle\u27s loop epithelial cells, this article is aimed at highlighting how the effects of TNF-α produced by these cell types may contribute to the beneficial effects of HSS in patients with ADHF. Although TNF-α produced by infiltrating macrophages and T cells exacerbates and attenuates renal damage, respectively, production of this cytokine within the tubular compartment of the kidney functions as an intrinsic regulator of blood pressure and Na+ homeostasis via mechanisms along the nephron related to inhibition of Na+-K+-2Cl- cotransporter isoform 2 activity and angiotensinogen expression. Thus, in the clinical setting of ADHF and hyponatremia, induction of TNF-α production along the nephron by administration of HSS may attenuate Na+-K+-2Cl- cotransporter isoform 2 activity and angiotensinogen expression as part of a mechanism that prevents excessive Na+ reabsorption in the thick ascending limb of Henle\u27s loop, thereby mitigating volume overload

    Renal-Specific Silencing of TNF (Tumor Necrosis Factor) Unmasks Salt-Dependent Increases in Blood Pressure via an NKCC2A (Na+-K+-2Cl- Cotransporter Isoform A)-Dependent Mechanism

    No full text
    We tested the hypothesis that TNF (tumor necrosis factor)-alpha produced within the kidney and acting on the renal tubular system is part of a regulatory mechanism that attenuates increases in blood pressure in response to high salt intake. Intrarenal administration of a lentivirus construct, which specifically silenced TNF in the kidney, did not affect baseline blood pressure. However, blood pressure increased significantly 1 day after mice with intrarenal silencing of TNF ingested 1% NaCl in the drinking water. The increase in blood pressure, which was continuously observed for 11 days, promptly returned to baseline levels when mice were switched from 1% NaCl to tap water. Silencing of renal TNF also increased NKCC2 (Na(+)-K(+)-2Cl(-) cotransporter) phosphorylation and induced a selective increase in NKCC2A (NKCC2 isoform A) mRNA accumulation in both the cortical and medullary thick ascending limb of Henle loop that was neither associated with a compensatory decrease of NKCC2F in the medulla nor NKCC2B in the cortex. The NaCl-mediated increases in blood pressure were completely absent when NKCC2A, using a lentivirus construct that did not alter expression of NKCC2F or NKCC2B, and TNF were concomitantly silenced in the kidney. Moreover, the decrease in urine volume and NaCl excretion induced by renal TNF silencing was abolished when NKCC2A was concurrently silenced, suggesting that this isoform contributes to the transition from a salt-resistant to salt-sensitive phenotype. Collectively, the data are the first to demonstrate a role for TNF produced by the kidney in the modulation of sodium homeostasis and blood pressure regulation

    Responses to Ang II (Angiotensin II), Salt Intake, and Lipopolysaccharide Reveal the Diverse Actions of TNF-Α (Tumor Necrosis Factor-Α) on Blood Pressure and Renal Function

    No full text
    TNF-α (tumor necrosis factor-alpha) is the best known as a proinflammatory cytokine; yet, this cytokine also has important immunomodulatory and regulatory functions. As the effects of TNF-α on immune system function were being revealed, the spectrum of its activities appeared in conflict with each other before investigators defined the settings and mechanisms by which TNF-α contributed to both host defense and chronic inflammation. These effects reflect self-protective mechanisms that may become harmful when dysregulated. The paradigm of physiological and pathophysiological effects of TNF-α has since been uncovered in the lung, colon, and kidney where its role has been identified in pulmonary edema, electrolyte reabsorption, and blood pressure regulation, respectively. Recent studies on the prohypertensive and inflammatory effects of TNF-α in the cardiovascular system juxtaposed to those related to NaCl and blood pressure homeostasis, the response of the kidney to lipopolysaccharide, and protection against bacterial infections are helping define the mechanisms by which TNF-α modulates distinct functions within the kidney. This review discusses how production of TNF-α by renal epithelial cells may contribute to regulatory mechanisms that not only govern electrolyte excretion and blood pressure homeostasis but also maintain the appropriate local hypersalinity environment needed for optimizing the innate immune response to bacterial infections in the kidney. It is possible that the wide range of effects mediated by TNF-α may be related to severity of disease, amount of inflammation and TNF-α levels, and the specific cell types that produce this cytokine, areas that remain to be investigated further

    Regulation of NKCC2B by TNF-α in Response to Salt Restriction

    No full text
    We previously showed that tumor necrosis factor-alpha (TNF) produced by renal epithelial cells inhibits NKCC2 activity as part of a mechanism that attenuates increases in blood pressure in response to high sodium chloride intake. As the role of TNF in the kidney is still being defined, the effects of low salt intake on TNF and NKCC2B expression were determined. Mice given a low salt (0.02% NaCl) diet (LSD) for 7 days exhibited a 62+/-7.4% decrease in TNF mRNA accumulation in the renal cortex. Mice ingesting LSD also exhibited about a 63% increase in cortical thick ascending limb of Henle\u27s loop (TAL) phospho-NKCC2 (pNKCC2) expression and a concomitant 3- fold increase in NKCC2B mRNA abundance without a concurrent change in NKCC2A mRNA accumulation. NKCC2B mRNA levels increased 5-fold in mice ingesting LSD that also received an intrarenal injection of a lentivirus construct that specifically silenced TNF in the kidney (U6-TNF-ex4) compared with mice injected with control lentivirus. Administration of a single intrarenal injection of murine recombinant TNF (5ng/g body weight) attenuated the increases of NKCC2B mRNA by approximately 50% and inhibited the increase in pNKCC2 by approximately 54% in renal cortex from mice given LSD for 7 days. Renal silencing of TNF decreased urine volume and NaCl excretion in mice given LS, effects that were reversed when NKCC2B was silenced in the kidney. Collectively, these findings demonstrate that downregulation of renal TNF production in response to LS conditions contributes to the regulation of sodium chloride reabsorption via an NKCC2B-dependent mechanism
    corecore