2,252 research outputs found

    Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics

    Get PDF
    Patterns of gene expression can be used to characterize and classify neuronal types. It is challenging, however, to generate taxonomies that fulfill the essential criteria of being comprehensive, harmonizing with conventional classification schemes, and lacking superfluous subdivisions of genuine types. To address these challenges, we used massively parallel single-cell RNA profiling and optimized computational methods on a heterogeneous class of neurons, mouse retinal bipolar cells (BCs). From a population of ∼25,000 BCs, we derived a molecular classification that identified 15 types, including all types observed previously and two novel types, one of which has a non-canonical morphology and position. We validated the classification scheme and identified dozens of novel markers using methods that match molecular expression to cell morphology. This work provides a systematic methodology for achieving comprehensive molecular classification of neurons, identifies novel neuronal types, and uncovers transcriptional differences that distinguish types within a class

    Improved cardiovascular risk prediction using targeted plasma proteomics in primary prevention.

    Get PDF
    AIMS: In the era of personalized medicine, it is of utmost importance to be able to identify subjects at the highest cardiovascular (CV) risk. To date, single biomarkers have failed to markedly improve the estimation of CV risk. Using novel technology, simultaneous assessment of large numbers of biomarkers may hold promise to improve prediction. In the present study, we compared a protein-based risk model with a model using traditional risk factors in predicting CV events in the primary prevention setting of the European Prospective Investigation (EPIC)-Norfolk study, followed by validation in the Progressione della Lesione Intimale Carotidea (PLIC) cohort. METHODS AND RESULTS: Using the proximity extension assay, 368 proteins were measured in a nested case-control sample of 822 individuals from the EPIC-Norfolk prospective cohort study and 702 individuals from the PLIC cohort. Using tree-based ensemble and boosting methods, we constructed a protein-based prediction model, an optimized clinical risk model, and a model combining both. In the derivation cohort (EPIC-Norfolk), we defined a panel of 50 proteins, which outperformed the clinical risk model in the prediction of myocardial infarction [area under the curve (AUC) 0.754 vs. 0.730; P < 0.001] during a median follow-up of 20 years. The clinically more relevant prediction of events occurring within 3 years showed an AUC of 0.732 using the clinical risk model and an AUC of 0.803 for the protein model (P < 0.001). The predictive value of the protein panel was confirmed to be superior to the clinical risk model in the validation cohort (AUC 0.705 vs. 0.609; P < 0.001). CONCLUSION: In a primary prevention setting, a proteome-based model outperforms a model comprising clinical risk factors in predicting the risk of CV events. Validation in a large prospective primary prevention cohort is required to address the value for future clinical implementation in CV prevention

    Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict

    Get PDF
    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated

    Detection of Heteroplasmic Mitochondrial DNA in Single Mitochondria

    Get PDF
    BACKGROUND: Mitochondrial DNA (mtDNA) genome mutations can lead to energy and respiratory-related disorders like myoclonic epilepsy with ragged red fiber disease (MERRF), mitochondrial myopathy, encephalopathy, lactic acidosis and stroke (MELAS) syndrome, and Leber's hereditary optic neuropathy (LHON). It is not well understood what effect the distribution of mutated mtDNA throughout the mitochondrial matrix has on the development of mitochondrial-based disorders. Insight into this complex sub-cellular heterogeneity may further our understanding of the development of mitochondria-related diseases. METHODOLOGY: This work describes a method for isolating individual mitochondria from single cells and performing molecular analysis on that single mitochondrion's DNA. An optical tweezer extracts a single mitochondrion from a lysed human HL-60 cell. Then a micron-sized femtopipette tip captures the mitochondrion for subsequent analysis. Multiple rounds of conventional DNA amplification and standard sequencing methods enable the detection of a heteroplasmic mixture in the mtDNA from a single mitochondrion. SIGNIFICANCE: Molecular analysis of mtDNA from the individually extracted mitochondrion demonstrates that a heteroplasmy is present in single mitochondria at various ratios consistent with the 50/50 heteroplasmy ratio found in single cells that contain multiple mitochondria

    Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations.

    Get PDF
    Asthma is a common disease with a complex risk architecture including both genetic and environmental factors. We performed a meta-analysis of North American genome-wide association studies of asthma in 5,416 individuals with asthma (cases) including individuals of European American, African American or African Caribbean, and Latino ancestry, with replication in an additional 12,649 individuals from the same ethnic groups. We identified five susceptibility loci. Four were at previously reported loci on 17q21, near IL1RL1, TSLP and IL33, but we report for the first time, to our knowledge, that these loci are associated with asthma risk in three ethnic groups. In addition, we identified a new asthma susceptibility locus at PYHIN1, with the association being specific to individuals of African descent (P = 3.9 × 10(-9)). These results suggest that some asthma susceptibility loci are robust to differences in ancestry when sufficiently large samples sizes are investigated, and that ancestry-specific associations also contribute to the complex genetic architecture of asthma

    Health and population effects of rare gene knockouts in adult humans with related parents.

    Get PDF
    Examining complete gene knockouts within a viable organism can inform on gene function. We sequenced the exomes of 3222 British adults of Pakistani heritage with high parental relatedness, discovering 1111 rare-variant homozygous genotypes with predicted loss of function (knockouts) in 781 genes. We observed 13.7% fewer homozygous knockout genotypes than we expected, implying an average load of 1.6 recessive-lethal-equivalent loss-of-function (LOF) variants per adult. When genetic data were linked to the individuals' lifelong health records, we observed no significant relationship between gene knockouts and clinical consultation or prescription rate. In this data set, we identified a healthy PRDM9-knockout mother and performed phased genome sequencing on her, her child, and control individuals. Our results show that meiotic recombination sites are localized away from PRDM9-dependent hotspots. Thus, natural LOF variants inform on essential genetic loci and demonstrate PRDM9 redundancy in humans.The study was funded by the Wellcome Trust (WT102627 and WT098051), Barts Charity (845/1796), Medical Research Council (MR/M009017/1). This paper presents independent research funded by the National Institute for Health Research (NIHR) under its Collaboration for Applied Health Research and Care (CLAHRC) for Yorkshire and Humber. Core support for Born in Bradford is also provided by the Wellcome Trust (WT101597). V.N. was supported by the Wellcome Trust PhD Studentship (WT099769). D.G.M. and K.K. were supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R01GM104371. E.R.M. is funded by NIHR Cambridge Biomedical Research Centre. H.H. is supported by awards to establish the Farr Institute of Health Informatics Research, London, from the Medical Research Council, Arthritis Research UK, British Heart Foundation, Cancer Research UK, Chief Scientist Office, Economic and Social Research Council, Engineering and Physical Sciences Research Council, NIHR, National Institute for Social Care and Health Research, and Wellcome Trust.This is the author accepted manuscript. The final version is available from the American Association for the Advancement of Science via https://doi.org/10.1126/science.aac862

    Cerebrospinal fluid proteomics define the natural history of autosomal dominant Alzheimer's disease

    Get PDF
    Alzheimer's disease (AD) pathology develops many years before the onset of cognitive symptoms. Two pathological processes-aggregation of the amyloid-& beta;(A & beta;) peptide into plaques and the microtubule protein tau into neurofibrillary tangles (NFTs)-are hallmarks of the disease. However, other pathological brain processes are thought to be key disease mediators of A & beta;plaque and NFT pathology. How these additional pathologies evolve over the course of the disease is currently unknown. Here we show that proteomic measurements in autosomal dominant AD cerebrospinal fluid (CSF) linked to brain protein coexpression can be used to characterize the evolution of AD pathology over a timescale spanning six decades. SMOC1 and SPON1 proteins associated with A & beta;plaques were elevated in AD CSF nearly 30 years before the onset of symptoms, followed by changes in synaptic proteins, metabolic proteins, axonal proteins, inflammatory proteins and finally decreases in neurosecretory proteins. The proteome discriminated mutation carriers from noncarriers before symptom onset as well or better than A & beta;and tau measures. Our results highlight the multifaceted landscape of AD pathophysiology and its temporal evolution. Such knowledge will be critical for developing precision therapeutic interventions and biomarkers for AD beyond those associated with A & beta;and tau. Proteomic analysis of cerebrospinal fluid from individuals with autosomal dominant Alzheimer's disease reveals how this complex and chronic disease evolves over many decades

    Comparison of clinical rating scales in genetic frontotemporal dementia within the GENFI cohort

    Get PDF
    Background Therapeutic trials are now underway in genetic forms of frontotemporal dementia (FTD) but clinical outcome measures are limited. The two most commonly used measures, the Clinical Dementia Rating (CDR)+National Alzheimer\u27s Disease Coordinating Center (NACC) Frontotemporal Lobar Degeneration (FTLD) and the FTD Rating Scale (FRS), have yet to be compared in detail in the genetic forms of FTD. Methods The CDR+NACC FTLD and FRS were assessed cross-sectionally in 725 consecutively recruited participants from the Genetic FTD Initiative: 457 mutation carriers (77 microtubule-Associated protein tau (MAPT), 187 GRN, 193 C9orf72) and 268 family members without mutations (non-carrier control group). 231 mutation carriers (51 MAPT, 92 GRN, 88 C9orf72) and 145 non-carriers had available longitudinal data at a follow-up time point. Results Cross-sectionally, the mean FRS score was lower in all genetic groups compared with controls: GRN mutation carriers mean 83.4 (SD 27.0), MAPT mutation carriers 78.2 (28.8), C9orf72 mutation carriers 71.0 (34.0), controls 96.2 (7.7), p\u3c0.001 for all comparisons, while the mean CDR+NACC FTLD Sum of Boxes was significantly higher in all genetic groups: GRN mutation carriers mean 2.6 (5.2), MAPT mutation carriers 3.2 (5.6), C9orf72 mutation carriers 4.2 (6.2), controls 0.2 (0.6), p\u3c0.001 for all comparisons. Mean FRS score decreased and CDR+NACC FTLD Sum of Boxes increased with increasing disease severity within each individual genetic group. FRS and CDR+NACC FTLD Sum of Boxes scores were strongly negatively correlated across all mutation carriers (r s =-0.77, p\u3c0.001) and within each genetic group (r s =-0.67 to-0.81, p\u3c0.001 in each group). Nonetheless, discrepancies in disease staging were seen between the scales, and with each scale and clinician-judged symptomatic status. Longitudinally, annualised change in both FRS and CDR+NACC FTLD Sum of Boxes scores initially increased with disease severity level before decreasing in those with the most severe disease: controls-0.1 (6.0) for FRS,-0.1 (0.4) for CDR+NACC FTLD Sum of Boxes, asymptomatic mutation carriers-0.5 (8.2), 0.2 (0.9), prodromal disease-2.3 (9.9), 0.6 (2.7), mild disease-10.2 (18.6), 3.0 (4.1), moderate disease-9.6 (16.6), 4.4 (4.0), severe disease-2.7 (8.3), 1.7 (3.3). Sample sizes were calculated for a trial of prodromal mutation carriers: over 180 participants per arm would be needed to detect a moderate sized effect (30%) for both outcome measures, with sample sizes lower for the FRS. Conclusions Both the FRS and CDR+NACC FTLD measure disease severity in genetic FTD mutation carriers throughout the timeline of their disease, although the FRS may be preferable as an outcome measure. However, neither address a number of key symptoms in the FTD spectrum, for example, motor and neuropsychiatric deficits, which future scales will need to incorporate

    Cerebrospinal fluid proteomics define the natural history of autosomal dominant Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) pathology develops many years before the onset of cognitive symptoms. Two pathological processes—aggregation of the amyloid- (A ) peptide into plaques and the microtubule protein tau into neurofibrillary tangles (NFTs)—are hallmarks of the disease. However, other pathological brain processes are thought to be key disease mediators of A plaque and NFT pathology. How these additional pathologies evolve over the course of the disease is currently unknown. Here we show that proteomic measurements in autosomal dominant AD cerebrospinal fluid (CSF) linked to brain protein coexpression can be used to characterize the evolution of AD pathology over a timescale spanning six decades. SMOC1 and SPON1 proteins associated with A plaques were elevated in AD CSF nearly 30 years before the onset of symptoms, followed by changes in synaptic proteins, metabolic proteins, axonal proteins, inflammatory proteins and finally decreases in neurosecretory proteins. The proteome discriminated mutation carriers from noncarriers before symptom onset as well or better than A and tau measures. Our results highlight the multifaceted landscape of AD pathophysiology and its temporal evolution. Such knowledge will be critical for developing precision therapeutic interventions and biomarkers for AD beyond those associated with A and tau
    • …
    corecore